期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的列车设备故障预测模型研究
被引量:
4
1
作者
袁焦
王珣
+2 位作者
潘兆马
杨学锋
邹文露
《计算机与现代化》
2020年第12期49-54,共6页
决策树作为机器学习和数据挖掘领域中广泛应用的预测模型,其输出结果易于理解和解释。针对高速铁路车载智能设备数量庞大的流数据且设备故障复杂和诊断效率低等问题,采用CVFDT决策树算法,通过对规范化的列控设备流数据进行机器学习,构...
决策树作为机器学习和数据挖掘领域中广泛应用的预测模型,其输出结果易于理解和解释。针对高速铁路车载智能设备数量庞大的流数据且设备故障复杂和诊断效率低等问题,采用CVFDT决策树算法,通过对规范化的列控设备流数据进行机器学习,构建车载设备智能故障预测模型(低概率发生、高概率发生和已发生故障),实现对设备潜在故障“事前排除”,提高故障分类精度、定位和诊断准确性,保障高速铁路运营安全和运输效率。
展开更多
关键词
高速铁路
流数据
车载设备
cvfdt算法
下载PDF
职称材料
题名
基于机器学习的列车设备故障预测模型研究
被引量:
4
1
作者
袁焦
王珣
潘兆马
杨学锋
邹文露
机构
中国中铁二院工程集团有限责任公司
出处
《计算机与现代化》
2020年第12期49-54,共6页
基金
成都市科技局重点研发支撑计划(2019-YF08-00160-GX)
中国中铁二院科研项目(KYY2019101(19-20))。
文摘
决策树作为机器学习和数据挖掘领域中广泛应用的预测模型,其输出结果易于理解和解释。针对高速铁路车载智能设备数量庞大的流数据且设备故障复杂和诊断效率低等问题,采用CVFDT决策树算法,通过对规范化的列控设备流数据进行机器学习,构建车载设备智能故障预测模型(低概率发生、高概率发生和已发生故障),实现对设备潜在故障“事前排除”,提高故障分类精度、定位和诊断准确性,保障高速铁路运营安全和运输效率。
关键词
高速铁路
流数据
车载设备
cvfdt算法
Keywords
high-speed railway
streaming data
onboard equipment
cvfdt
algorithm
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的列车设备故障预测模型研究
袁焦
王珣
潘兆马
杨学锋
邹文露
《计算机与现代化》
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部