Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].M...Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].Many technologies have been developed to eliminate CVOCs emission.Catalytic combustion is regarded as one of the most economical and reliable technologies.The development of catalytic combustion system includes exploring reaction devices,reaction processes and catalysts,among which the key task is to develop highperformance catalysts.展开更多
The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two ca...The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two catalysts with different distributions of CeO_(2) on the inner and outer surfaces of 4.0Ce-USY-ex and 4.0Ce-USY-dp(USY zeolite) were prepared respectively by ion exchange and deposition methods,with a purpose of finding out how the location of the oxidation sites(CeO_(2)) influence its synergistic effect with the acidic sites of zeolite.The results show that 4.0Ce-USY-ex is much more active for catalytic degradation of 1,2-dichloroethane(DCE),while 4.0Ce-USY-dp catalyst exhibit higher catalytic degradation activity for other structured CVOCs(dichloromethane(DCM),trichloroethylene(TCE),chlorobenzene(CB)).CeO_(2) in 4.0Ce-USY-ex catalyst mainly disperses in the pore channels of USY zeolite,and there are many strong acid centers on the surface,which is conducive to the dechlorination conversion of CVOCs.However,CeO_(2) in 4.0Ce-USY-dp catalyst is mainly distributed on the outer surface of USY and has strong oxidation ability,which contributes to the deep oxidation of CVOCs.Moreover,the presence of a large number of strong acid centers on the catalyst surface of 4.0Ce-USY-ex catalysts leads to severe accumulation of surface carbon species and significantly decreases its stability towards DCE.However,a large number of active oxygen species on the surface of 4.0Ce-USY-dp and CeO_(2) catalysts are beneficial to the deep oxidation of DCE,reducing the formation of surface carbon and thus improving the stability of the catalyst.Thus,the influence of the location of the oxidation sites on its synergistic effect with the acidic sites was established in the present work,which could provide some new ideas for the rational design of CVOCs degradation catalyst with appropriate distribution of active sites.展开更多
A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs...A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.展开更多
文摘Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].Many technologies have been developed to eliminate CVOCs emission.Catalytic combustion is regarded as one of the most economical and reliable technologies.The development of catalytic combustion system includes exploring reaction devices,reaction processes and catalysts,among which the key task is to develop highperformance catalysts.
基金Project supported by the National Key Research and Development Program of China (2022YFB3504200)。
文摘The catalytic behavior of a catalyst for chlorine-containing volatile organic compounds(CVOCs) oxidation largely depends on the synergistic interaction between the oxidizing and acidic sites.In the present work,two catalysts with different distributions of CeO_(2) on the inner and outer surfaces of 4.0Ce-USY-ex and 4.0Ce-USY-dp(USY zeolite) were prepared respectively by ion exchange and deposition methods,with a purpose of finding out how the location of the oxidation sites(CeO_(2)) influence its synergistic effect with the acidic sites of zeolite.The results show that 4.0Ce-USY-ex is much more active for catalytic degradation of 1,2-dichloroethane(DCE),while 4.0Ce-USY-dp catalyst exhibit higher catalytic degradation activity for other structured CVOCs(dichloromethane(DCM),trichloroethylene(TCE),chlorobenzene(CB)).CeO_(2) in 4.0Ce-USY-ex catalyst mainly disperses in the pore channels of USY zeolite,and there are many strong acid centers on the surface,which is conducive to the dechlorination conversion of CVOCs.However,CeO_(2) in 4.0Ce-USY-dp catalyst is mainly distributed on the outer surface of USY and has strong oxidation ability,which contributes to the deep oxidation of CVOCs.Moreover,the presence of a large number of strong acid centers on the catalyst surface of 4.0Ce-USY-ex catalysts leads to severe accumulation of surface carbon species and significantly decreases its stability towards DCE.However,a large number of active oxygen species on the surface of 4.0Ce-USY-dp and CeO_(2) catalysts are beneficial to the deep oxidation of DCE,reducing the formation of surface carbon and thus improving the stability of the catalyst.Thus,the influence of the location of the oxidation sites on its synergistic effect with the acidic sites was established in the present work,which could provide some new ideas for the rational design of CVOCs degradation catalyst with appropriate distribution of active sites.
基金Project supported by the National Key Research and Development Program of China(2016YFC0204300)the National Natural Science Foundation of China(21477109)。
文摘A series of transition metals(Fe,Co,Ni,Cu,Cr and Mn)-doped CeO_(2)-TiO_(2) catalysts were prepared by the sol-gel method and applied for the catalytic removal of 1,2-dichloroethane(DCE) as a model for chlorinated VOCs(CVOCs).The various characterization methods including X-ray diffraction(XRD),N_(2) adsorption-desorption,UV-Raman,NH_(3) temperature-programmed desorption(NH_(3)-TPD) and H_(2) temperature-programmed reduction(H_(2)-TPR) were utilized to investigate the physicochemical properties of the catalysts.The results show that doping Fe,Co,Ni or Mn can obviously promote the activity of CeO_(2)-TiO_(2) mixed oxides for DCE degradation,which is related to their improved texture properties,acid sites(especially for strong acidity) and low-temperature reducibility.Particularly,CeTi-Fe doped with moderate Fe exhibits excellent activity for 1,2-dichloroethane(DCE) degradation,giving a T_(90%) value as low as 250℃.More importantly,only trace chlorinated byproducts were produced during the low-temperature degradation of various CVOCs(dichloromethane(DCM),trichloroethylene(TCE) and chlorobenzene(CB)) over CeTi-Fe1/9 catalyst with high durability.