Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of...Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of arsenic, cadmium and lead by B. juncea (cvs. Rai and BARI-11) parents and F1 hybrids. The experiment was conducted in the hydroponic media in the greenhouse of University of Southampton under a Randomised Block Design. Sodium arsenite, cadmium sulphate and lead nitrate with 0 ppm, 0.5 ppm and 1 ppm were used. The cadmium treated plants were analysed by Varian Atomic absorption spectrophotometer-200. The samples of arsenic and lead were analysed by Inductively Coupled Plasma Atomic Emission Spectrophotometer. The results suggest that arsenic was detected only in the root systems while cadmium and lead were detected both in the root and shoot systems. Significant differences in the uptake were observed for different concentrations. Accumulation of arsenic was detected only in the root systems of B. juncea (cvs. Rai and BARI-11) at lower concentrations. Hence, this can be used as an agriculturally viable and efficient phytoaccumulator in the arsenic affected areas where contamination level is low and the contamination occurs at the rooting level.展开更多
文摘Although Brassica juncea (Indian mustard) is reported to be a good accumulator of metals, little is known of the selected varieties of B. juncea (cvs. Rai and BARI-11). This paper investigates the phytoaccumulation of arsenic, cadmium and lead by B. juncea (cvs. Rai and BARI-11) parents and F1 hybrids. The experiment was conducted in the hydroponic media in the greenhouse of University of Southampton under a Randomised Block Design. Sodium arsenite, cadmium sulphate and lead nitrate with 0 ppm, 0.5 ppm and 1 ppm were used. The cadmium treated plants were analysed by Varian Atomic absorption spectrophotometer-200. The samples of arsenic and lead were analysed by Inductively Coupled Plasma Atomic Emission Spectrophotometer. The results suggest that arsenic was detected only in the root systems while cadmium and lead were detected both in the root and shoot systems. Significant differences in the uptake were observed for different concentrations. Accumulation of arsenic was detected only in the root systems of B. juncea (cvs. Rai and BARI-11) at lower concentrations. Hence, this can be used as an agriculturally viable and efficient phytoaccumulator in the arsenic affected areas where contamination level is low and the contamination occurs at the rooting level.