A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power...A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power of 3.5 W, and pumping threshold of 838 mW have been obtained and compared with those from Tm, Ho:YLF under identical experimental conditions.展开更多
We report the first(to the best of our knowledge) tunable passively Q-switched Er3+-doped ZrF4 fiber laser around 3.5 μm. In this case, a Fe2+:ZnSe crystal is used as the saturable absorber, and a plane-ruled grating...We report the first(to the best of our knowledge) tunable passively Q-switched Er3+-doped ZrF4 fiber laser around 3.5 μm. In this case, a Fe2+:ZnSe crystal is used as the saturable absorber, and a plane-ruled grating in a Littrow configuration acts as the tuning element. At the tuned wavelength of 3478.0 nm, stable Q-switching with a maximum average power of 583.7 mW was achieved with a slope efficiency of 15.2% relative to the launched 1981 nm pump power. Further power scaling is mainly limited by the available 1981 nm pump power. The corresponding pulse width, repetition rate, and pulse energy are 1.18 μs, 71.43 kHz, and 7.54 μJ, respectively. By rotating the grating, the Q-switching can be continuously tuned in the region of 3.4–3.7 μm. To the best of our knowledge, this is the first pulsed rare-earth-doped fiber laser tunable in the region beyond 3.4 μm.展开更多
基金This work was supported by the Scientific Research Foundation of Harbin Institute of Technology
文摘A set of fiber-coupled continuous wave (CW) diode lasers has been used to pump Tm, Ho:GdVO_4 and generate 2.048-μm laser radiation at liquid nitrogen temperature. The optical-optical efficiencies of 25%, output power of 3.5 W, and pumping threshold of 838 mW have been obtained and compared with those from Tm, Ho:YLF under identical experimental conditions.
基金National Natural Science Foundation of China(NSFC)(61722503,61421002,61435003)Open Fund of Science and Technology on Solid-State Laser Laboratory+1 种基金Joint Fund of Ministry of Education for Equipment PreResearch(6141A02033411)Field Funding for Equipment Pre-Research(1114180106A)
文摘We report the first(to the best of our knowledge) tunable passively Q-switched Er3+-doped ZrF4 fiber laser around 3.5 μm. In this case, a Fe2+:ZnSe crystal is used as the saturable absorber, and a plane-ruled grating in a Littrow configuration acts as the tuning element. At the tuned wavelength of 3478.0 nm, stable Q-switching with a maximum average power of 583.7 mW was achieved with a slope efficiency of 15.2% relative to the launched 1981 nm pump power. Further power scaling is mainly limited by the available 1981 nm pump power. The corresponding pulse width, repetition rate, and pulse energy are 1.18 μs, 71.43 kHz, and 7.54 μJ, respectively. By rotating the grating, the Q-switching can be continuously tuned in the region of 3.4–3.7 μm. To the best of our knowledge, this is the first pulsed rare-earth-doped fiber laser tunable in the region beyond 3.4 μm.