期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Quinpi:Integrating Conservation Laws with CWENO Implicit Methods
1
作者 G.Puppo M.Semplice G.Visconti 《Communications on Applied Mathematics and Computation》 2023年第1期343-369,共27页
Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Im... Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws. 展开更多
关键词 Implicit schemes Essentially non-oscillatory schemes Finite volumes WENO and cweno reconstructions
下载PDF
Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws 被引量:7
2
作者 Jianzhong Chen Zhongke Shi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期84-92,共9页
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW... A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments. 展开更多
关键词 Hyperbolic systems of conservation laws Relaxation schemes cweno reconstruction
下载PDF
A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model 被引量:6
3
作者 Jian-zhong CHEN Zhong-ke SHI Yan-mei HU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1835-1844,共10页
We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-expl... We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method. 展开更多
关键词 Relaxation scheme Multi-class LWR model Traffic flow cweno reconstruction Implicit-explicit Runge-Kutta
原文传递
AN EFFICIENT THIRD-ORDER SCHEME FOR THREE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS
4
作者 LI CAI JIAN-HU FENG +1 位作者 YU-FENG NIE WEN-XIAN XIE 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第4期38-57,共20页
In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type centr... In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type central scheme,the CWENOtype central-upwind scheme,i.e.,the semi-discrete central-upwind scheme based on our third-order CWENO reconstruction,is developed straightforwardly to solve 3D systems by the so-called componentwise and dimensional-by-dimensional technologies.The high resolution,the efficiency and the nonoscillatory property of the scheme can be verified by solving several numerical experiments. 展开更多
关键词 Hyperbolic conservation laws cweno reconstruction semi-discrete centralupwind scheme.
原文传递
SOLUTION OF 2D SHALLOW WATER EQUATIONS BY GENUINELY MULTIDIMENSIONAL SEMI-DISCRETE CENTRAL SCHEME 被引量:3
5
作者 CHEN Jian-zhong, SHI Zhong-ke 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第4期436-442,共7页
A numerical two-dimensional shallow water method was based on method for solving the equations was presented. This the third-order genuinely multidimensional semi-discrete central scheme for spatial discretization an... A numerical two-dimensional shallow water method was based on method for solving the equations was presented. This the third-order genuinely multidimensional semi-discrete central scheme for spatial discretization and the optimal third-order Strong Stability Preserving (SSP) Runge-Kutta method for time integration. The third-order compact Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction was adopted to guarantee the non-oscillatory behavior of the presented scheme and improve the resolution. Two kinds of source terms were considered in this work. They were evaluated using different approaches. The resulting scheme does not require Riemann solvers or characteristic decomposition, hence it retains all the attractive features of central schemes such as simplicity and high resolution. To evaluate the performance of the presented scheme, several numerical examples were tested. The results demonstrate that our method is efficient, stable and robust. 展开更多
关键词 2D shallow water equations semi-discrete central scheme Central Weighted Essentially Non-Oscil]atory cweno reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部