To review the implication of CXCR4 for gastrointestinal cancer, a "Pubmed" analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers. Search terms applied were ...To review the implication of CXCR4 for gastrointestinal cancer, a "Pubmed" analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers. Search terms applied were "cancer, malignoma, esophageal, gastric, colon, colorectal, hepatic, pancreatic, CXCR4, SDF- 1α, and SDF-1β". CXCR4 expression correlated with dissemination of diverse gastrointestinal malignomas. The CXCR4 ligand SDF-1α might act as "chemorepellent" while SDF-1β might act as "chemorepellent" for CTLs, inducing tumor rejection. The paracrine expression of SDF-1α was furthermore closely associated with neoangiogenesis. CXCR4 and its ligands influence the dissemination, immune rejection, and neoangiogenesis of human gastrointestinal cancers. Inhibition of CXCR4 might be an interesting therapeutic option.展开更多
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant </span><span style="font-family:Verdana;">progres...Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant </span><span style="font-family:Verdana;">progress has been made in developing targeted therapies for breast cancer,</span> <span style="font-family:Verdana;">advanced breast cancer continues to have high mortality, with poor 5-year</span> <span style="font-family:Verdana;">survival rates. Thus, current therapies are insufficient in treating advanced</span><span style="font-family:Verdana;"> stages of breast cancer;new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber </span><span style="font-family:Verdana;">to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We</span> <span style="font-family:Verdana;">showed that the modified virus targets and infects CXCR4- and CXCR7-</span><span style="font-family:Verdana;">overexpressing breast cancer cells more efficiently than a wild-type control</span><span style="font-family:Verdana;"> vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.展开更多
Aflatoxin B_(1)(AFB_(1))is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin,particularly causing damages to kidney.Glomerular podocytes are terminally differentiated epithelial cells.AF...Aflatoxin B_(1)(AFB_(1))is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin,particularly causing damages to kidney.Glomerular podocytes are terminally differentiated epithelial cells.AFB_(1)induces podocyte inflammation,proteinuria and renal dysfunction.Studying the mechanism of AFB_(1)-induced podocyte inflammation and murine kidney dysfunction,we detected that AFB_(1)increased ubiquitindependent degradation of the transcription factor RelA through enhanced interaction of RelA with E3 ubiquitin ligase tripartite motif containing 7(TRIM7)in mouse podocyte clone-5(MPC-5)and mouse glomeruli.Reduction of RelA resulted in decreasing microRNA-9(miR-9)and activating the chemokine receptor 4(CXCR4),thioredoxin interacting protein(TXNIP),and NOD-like receptor pyrin domain-containing 3(NLRP3)signaling axis(CXCR4/TXNIP/NLRP3 pathway),leading to podocyte inflammation.We also determined that downregulation of miR-9 led to CXCR4 expression and the downstream TXNIP/NLRP3 pathway activation.Overexpression of miR-9 or deletion of CXCR4 suppressed AFB_(1)-induced CXCR4/TXNIP/NLRP3 pathway,resulting in alleviating podocyte inflammation and kidney dysfunction.Our findings indicated that ubiquitin-dependent proteolysis of RelA,downregulation of miR-9,and activation of CXCR4/TXNIP/NLRP3 pathway played an essential role in AFB_(1)-induced glomerular podocyte inflammation.Our study revealed a novel mechanism,via RelA,for the control of AFB_(1)’s nephrotoxicity,leading to an effective protection of food safety and public health.展开更多
This study investigated the effects of small interfering RNA (siRNA)-mediated silencing of chemokine receptor 4 (CXCR4) on the invasion capacity of human neuroblastoma cell line SH-SY5Y in vitro. Three siRNAs targ...This study investigated the effects of small interfering RNA (siRNA)-mediated silencing of chemokine receptor 4 (CXCR4) on the invasion capacity of human neuroblastoma cell line SH-SY5Y in vitro. Three siRNAs targeting CXCR4 were chemically synthesized and individually transfected into SH-SY5Y cells. Expression of CXCR4 mRNA and protein was signiifcantly sup-pressed in transfected cells by all three sequence-speciifc siRNAs compared with control groups. Furthermore, the invasion capacity of SH-SY5Y cells was signiifcantly decreased following trans-fection with CXCR4-speciifc siRNA compared with the control groups. These data demonstrate that down-regulation of CXCR4 can inhibit in vitro invasion of neuroblastoma.展开更多
文摘To review the implication of CXCR4 for gastrointestinal cancer, a "Pubmed" analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers. Search terms applied were "cancer, malignoma, esophageal, gastric, colon, colorectal, hepatic, pancreatic, CXCR4, SDF- 1α, and SDF-1β". CXCR4 expression correlated with dissemination of diverse gastrointestinal malignomas. The CXCR4 ligand SDF-1α might act as "chemorepellent" while SDF-1β might act as "chemorepellent" for CTLs, inducing tumor rejection. The paracrine expression of SDF-1α was furthermore closely associated with neoangiogenesis. CXCR4 and its ligands influence the dissemination, immune rejection, and neoangiogenesis of human gastrointestinal cancers. Inhibition of CXCR4 might be an interesting therapeutic option.
文摘Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant </span><span style="font-family:Verdana;">progress has been made in developing targeted therapies for breast cancer,</span> <span style="font-family:Verdana;">advanced breast cancer continues to have high mortality, with poor 5-year</span> <span style="font-family:Verdana;">survival rates. Thus, current therapies are insufficient in treating advanced</span><span style="font-family:Verdana;"> stages of breast cancer;new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber </span><span style="font-family:Verdana;">to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We</span> <span style="font-family:Verdana;">showed that the modified virus targets and infects CXCR4- and CXCR7-</span><span style="font-family:Verdana;">overexpressing breast cancer cells more efficiently than a wild-type control</span><span style="font-family:Verdana;"> vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.
基金funded by Suzhou Science and Technology Council(SNG201907)Universities Natural Science Foundation of Jiangsu Province(20KJB330002)+6 种基金General Program of China Postdoctoral Science Foundation(2022M711369)the Startup Funding of Soochow University,Jiangsu Province-Suzhou Science and Technology Planning Project(SL T201917)National Natural Science Foundation of China(32172922,31972741)Natural Science Foundation of Jiangsu Province of China(BK20211216,BK20221091)the Startup Funding of Hefei University of Technology(1302003712022058)China-CEEC Joint University Education Project(202010)the Excellence Project PrF UHK(2217/2022-2023)。
文摘Aflatoxin B_(1)(AFB_(1))is a naturally-occurring mycotoxin and recognized as the most toxic foodborne toxin,particularly causing damages to kidney.Glomerular podocytes are terminally differentiated epithelial cells.AFB_(1)induces podocyte inflammation,proteinuria and renal dysfunction.Studying the mechanism of AFB_(1)-induced podocyte inflammation and murine kidney dysfunction,we detected that AFB_(1)increased ubiquitindependent degradation of the transcription factor RelA through enhanced interaction of RelA with E3 ubiquitin ligase tripartite motif containing 7(TRIM7)in mouse podocyte clone-5(MPC-5)and mouse glomeruli.Reduction of RelA resulted in decreasing microRNA-9(miR-9)and activating the chemokine receptor 4(CXCR4),thioredoxin interacting protein(TXNIP),and NOD-like receptor pyrin domain-containing 3(NLRP3)signaling axis(CXCR4/TXNIP/NLRP3 pathway),leading to podocyte inflammation.We also determined that downregulation of miR-9 led to CXCR4 expression and the downstream TXNIP/NLRP3 pathway activation.Overexpression of miR-9 or deletion of CXCR4 suppressed AFB_(1)-induced CXCR4/TXNIP/NLRP3 pathway,resulting in alleviating podocyte inflammation and kidney dysfunction.Our findings indicated that ubiquitin-dependent proteolysis of RelA,downregulation of miR-9,and activation of CXCR4/TXNIP/NLRP3 pathway played an essential role in AFB_(1)-induced glomerular podocyte inflammation.Our study revealed a novel mechanism,via RelA,for the control of AFB_(1)’s nephrotoxicity,leading to an effective protection of food safety and public health.
基金supported by the National Natural Science Foundation of China,No.81272986the Natural Science Foundation of Shandong Province,No.ZR2011HZ002
文摘This study investigated the effects of small interfering RNA (siRNA)-mediated silencing of chemokine receptor 4 (CXCR4) on the invasion capacity of human neuroblastoma cell line SH-SY5Y in vitro. Three siRNAs targeting CXCR4 were chemically synthesized and individually transfected into SH-SY5Y cells. Expression of CXCR4 mRNA and protein was signiifcantly sup-pressed in transfected cells by all three sequence-speciifc siRNAs compared with control groups. Furthermore, the invasion capacity of SH-SY5Y cells was signiifcantly decreased following trans-fection with CXCR4-speciifc siRNA compared with the control groups. These data demonstrate that down-regulation of CXCR4 can inhibit in vitro invasion of neuroblastoma.