期刊文献+
共找到82,126篇文章
< 1 2 250 >
每页显示 20 50 100
A Review on Technologies for the Use of CO2 as a Working Fluid in Refrigeration and Power Cycles
1
作者 Orelien T. Boupda Hyacinthe D. Tessemo +3 位作者 Isidore B. Nkounda Fongang Francklin G. Nyami Frederic Lontsi Thomas Djiako 《Energy and Power Engineering》 2024年第6期217-256,共40页
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther... The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented. 展开更多
关键词 Refrigeration cycle Power cycle System Performance Transcritical CO2 cycles Working Fluid
下载PDF
有向图上基于层次树索引的最大cycle truss社区搜索
2
作者 宗传玉 张纯鹤 夏秀峰 《计算机应用》 CSCD 北大核心 2024年第1期190-198,共9页
社区搜索旨在从信息网络中找出包含用户查询顶点的高内聚连通子图,cycle truss是一种基于cycle三角形的社区搜索模型,而现有的基于索引的cycle truss社区搜索方法存在索引空间大、搜索效率低、社区内聚性低的缺点。为了解决这一问题,提... 社区搜索旨在从信息网络中找出包含用户查询顶点的高内聚连通子图,cycle truss是一种基于cycle三角形的社区搜索模型,而现有的基于索引的cycle truss社区搜索方法存在索引空间大、搜索效率低、社区内聚性低的缺点。为了解决这一问题,提出一种基于层次树索引的最大cycle truss社区搜索方法。首先,提出了k-cycle truss分解算法,并引入了两个重要的概念:cycle三角连通与k-层次等价。基于k-层次等价设计了层次树索引TreeCIndex与表结构索引SuperTable,在此基础上,并基于这两个新的索引,提出了两个高效的cycle truss社区搜索算法。在4个真实数据集上与已有的基于TrussIndex与EquiTruss的社区搜索算法进行了比较,实验结果表明,TreeCIndex与SuperTable比TrussIndex与EquiTruss节省至少41.5%的空间,索引构建的时间节省8.2%至98.3%,且搜索最大cycle truss社区的效率分别高出了一个和两个数量级。 展开更多
关键词 有向图 社区搜索 cycle truss cycle三角形 层次等价 层次树索引
下载PDF
Increasing Threat of Scarcity Prompts Rise in Water Recycling
3
作者 Chris Palmer 《Engineering》 SCIE EI CAS CSCD 2024年第2期6-8,共3页
In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower ... In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1]. 展开更多
关键词 cyclING WASTEWATER recycling
下载PDF
Cyclostratigraphy and paleoclimate analysis of the Lingshui Formation in Changchang Sag,Qiongdongnan Basin,China
4
作者 Haizhang Yang Wu Tang +3 位作者 Enze Xu Shangfeng Zhang Yaning Wang Min Xu 《Energy Geoscience》 EI 2024年第1期108-120,共13页
The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern pa... The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession. 展开更多
关键词 Milankovitch cycle PALEOCLIMATE Qiongdongnan Basin cyclOSTRATIGRAPHY Astronomical time scale
下载PDF
Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment
5
作者 Jie Huang Rongbin Jiang +1 位作者 Xiaobo Sun Yingyong Shuai 《Journal of Renewable Materials》 EI CAS 2024年第1期187-201,共15页
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ... The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential. 展开更多
关键词 Carbonation treatment REPAIR freeze-thaw cycles second-generation recycled fine aggregate
下载PDF
Effect of the Initial Vortex Structure on Intensity Change During Eyewall Replacement Cycle of Tropical Cyclones:A Numerical Study
6
作者 杨昕玮 王玉清 +2 位作者 王慧 徐晶 占瑞芬 《Journal of Tropical Meteorology》 SCIE 2024年第2期106-117,共12页
This study investigates the effect of the initial tropical cyclone(TC)vortex structure on the intensity change during the eyewall replacement cycle(ERC)of TCs based on two idealized simulations using the Weather Resea... This study investigates the effect of the initial tropical cyclone(TC)vortex structure on the intensity change during the eyewall replacement cycle(ERC)of TCs based on two idealized simulations using the Weather Research and Forecasting(WRF)model.Results show that an initially smaller TC with weaker outer winds experienced a much more drastic intensity change during the ERC than an initially larger TC with stronger outer winds.It is found that an initially larger TC vortex with stronger outer winds favored the development of more active spiral rainbands outside the outer eyewall,which slowed down the contraction and intensification of the outer eyewall and thus prolonged the duration of the concentric eyewall and slow intensity evolution.In contrast,the initially smaller TC with weaker outer winds corresponded to higher inertial stability in the inner core and weaker inertial stability but stronger filamentation outside the outer eyewall.These led to stronger boundary layer inflow,stronger updraft and convection in the outer eyewall,and suppressed convective activity outside the outer eyewall.These resulted in the rapid weakening during the formation of the outer eyewall,followed by a rapid re-intensification of the TC during the ERC.Our study demonstrates that accurate initialization of the TC structure in numerical models is crucial for predicting changes in TC intensity during the ERC.Additionally,monitoring the activity of spiral rainbands outside the outer eyewall can help to improve short-term intensity forecasts for TCs experiencing ERCs. 展开更多
关键词 tropical cyclones concentric eyewall inner eyewall and outer eyewall eyewall replacement cycle intensity change
下载PDF
Change in Grain-Size Composition of Lignite under Cyclic Freezing-Thawing and Wetting-Drying
7
作者 Natalia S. Batugina Vladislav I. Fedorov 《Natural Resources》 2024年第1期17-27,共11页
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to... The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying. 展开更多
关键词 LIGNITE Freezing-Thawing cycle Wetting-Drying cycle Grain Size Composition Dust Coal Storage Loss Quality
下载PDF
A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis
8
作者 Dounmene Tadida Lhami Arielle Wafula Gerald Nalume Youwene Gilbert 《Open Journal of Polymer Chemistry》 2024年第3期113-145,共33页
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti... Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions. 展开更多
关键词 PLASTICS Thermal Recycling Carbon Dioxide Emissions Life cycle Evaluation PYROLYSIS
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:3
9
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
10
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:1
11
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis Multi-objective optimization Decision-making methods
下载PDF
Involvement of the ABA-and H_(2)O_(2)-Mediated Ascorbate-Glutathione Cycle in the Drought Stress Responses of Wheat Roots 被引量:1
12
作者 Mengyuan Li Zhongye Gao +2 位作者 Lina Jiang Leishan Chen Jianhui Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期329-342,共14页
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th... Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities. 展开更多
关键词 ABA H_(2)O_(2) AsA-GSH cycle drought stress wheat roots
下载PDF
Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma
13
作者 Gan Xiong Nan Xie +17 位作者 Min Nie Rongsong Ling Bokai Yun Jiaxiang Xie Linlin Ren Yaqi Huang Wenjin Wang Chen Yi Ming Zhang Xiuyun Xu Caihua Zhang Bin Zou Leitao Zhang Xiqiang Liu Hongzhang Huang Demeng Chen Wei Cao Cheng Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期251-264,共14页
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un... Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma. 展开更多
关键词 inhibited cyclING eliminated
下载PDF
Long-Cycle Lithium Batteries with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) Cathodes above 4.5 V Enabled by Uniform Coating of Nanosized Garnet Electrolytes
14
作者 王建群 赵宁 郭向欣 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期161-175,共15页
The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers... The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C. 展开更多
关键词 coating cyclING sized
下载PDF
TuBG1 promotes hepatocellular carcinoma via ATR/P53-apoptosis and cycling pathways
15
作者 Yan Zhang Zhen-Zhen Wang +4 位作者 An-Qi Han Ming-Ya Yang Li-Xin Zhu Fa-Ming Pan Yong Wang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第2期195-209,共15页
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate... Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC. 展开更多
关键词 TuBG1 Hepatocellular carcinoma APOPTOSIS Cell cycling IMMUNOMODULATORS
下载PDF
THE LIMIT CYCLE BIFURCATIONS OF A WHIRLING PENDULUM WITH PIECEWISE SMOOTH PERTURBATIONS
16
作者 杨纪华 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1115-1144,共30页
This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.... This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles. 展开更多
关键词 whirling pendulum limit cycle Melnikov function Picard-Fuchs equation Chebyshev system
下载PDF
Dual‑Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease
17
作者 Dandan Chu Mengyang Zhao +8 位作者 Shisong Rong Wonho Jhe Xiaolu Cai Yi Xiao Wei Zhang Xingchen Geng Zhanrong Li Xingcai Zhang Jingguo Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期439-457,共19页
Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Alt... Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Although inflammation is core cause of the DED vicious cycle,reactive oxygen species(ROS)play a pivotal role in the vicious cycle by regulating inflammation from upstream.Therefore,current therapies merely targeting inflammation show the failure of DED treatment.Here,a novel dual-atom nanozymes(DAN)-based eye drops are developed.The antioxidative DAN is successfully prepared by embedding Fe and Mn bimetallic single-atoms in N-doped carbon material and modifying it with a hydrophilic polymer.The in vitro and in vivo results demonstrate the DAN is endowed with superior biological activity in scavenging excessive ROS,inhibiting NLRP3 inflammasome activation,decreasing proinflammatory cytokines expression,and suppressing cell apoptosis.Consequently,the DAN effectively alleviate ocular inflammation,promote corneal epithelial repair,recover goblet cell density and tear secretion,thus breaking the DED vicious cycle.Our findings open an avenue to make the DAN as an intervention form to DED and ROSmediated inflammatory diseases. 展开更多
关键词 Dry eye disease DAN Dual-atom nanozyme Vicious cycle NLRP3 inflammasome NANOMEDICINE
下载PDF
Bicycle-related traumatic injuries: a retrospective study during COVID-19 pandemic
18
作者 Jie Er Janice Soo Yuan Helen Zhang +1 位作者 Gek Hsiang Lim Fatimah Lateef 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第4期256-262,共7页
BACKGROUND:This study aimed to review bicycle-related injuries during the COVID-19 pandemic to assist with reinforcement or implementation of new policies for injury prevention.METHODS:This is a retrospective descript... BACKGROUND:This study aimed to review bicycle-related injuries during the COVID-19 pandemic to assist with reinforcement or implementation of new policies for injury prevention.METHODS:This is a retrospective descriptive analysis of injuries sustained during cycling for patients 18 years old and above who presented to Singapore General Hospital from January to June 2021.Medical records were reviewed and consolidated.Descriptive analyses were used to summarize patient characteristics,and differences in characteristics subgrouped by triage acuity and discharge status were analyzed.RESULTS:The study included 272 patients with a mean age of 43 years and a male predominance(71.7%).Most presented without referrals(88.2%)and were not conveyed by ambulances(70.6%).Based on acuity category,there were 24(8.8%)Priority 1(P1)patients with 7 trauma activations,174(64.0%)and 74(27.2%)P2 and P3 patients respectively.The most common injuries were fractures(34.2%),followed by superficial abrasion/contusion(29.4%)and laceration/wound(19.1%).Thirteen(4.8%)patients experienced head injury and 85 patients(31.3%)were documented to be wearing a helmet.The majority occurred on the roads as traffic accidents(32.7%).Forty-two patients(15.4%)were admitted with a mean length of stay of 4.1 d and 17(6.3%)undergone surgical procedures.Out of 214(78.7%)discharged patients,no re-attendances or mortality were observed.In the subgroup analysis,higher acuity patients were generally older,with higher proportions of head injuries leading to admission.CONCLUSION:Our study highlights significant morbidities in bicycle-related injuries.There is also a high proportion of fractures in the young healthy male population.Injury prevention is paramount and we propose emphasizing helmet use and road user safety. 展开更多
关键词 cyclING INJURIES Emergency department
下载PDF
Durable K-ion batteries with 100% capacity retention up to 40,000 cycles
19
作者 Xianlu Lu Zhao Liang +6 位作者 Zhi Fang Dongdong Zhang Yapeng Zheng Qiao Liu Dingfa Fu Jie Teng Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期201-212,共12页
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce... Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications. 展开更多
关键词 carbon nanosheet cycle stability K-ion batteries rate performance specific capacity
下载PDF
The Impact of Network Topologies and Radio Duty Cycle Mechanisms on the RPL Routing Protocol Power Consumption
20
作者 Amal Hkiri Hamzah Faraj +3 位作者 Omar Ben Bahri Mouna Karmani Sami Alqurashi Mohsen Machhout 《Computers, Materials & Continua》 SCIE EI 2024年第5期1835-1854,共20页
The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va... The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments. 展开更多
关键词 WSN IoT radio duty cycles TOPOLOGIES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部