期刊文献+
共找到595篇文章
< 1 2 30 >
每页显示 20 50 100
RESEARCH ON THE MINIMUM ZONE CYLINDRICITY EVALUATION BASED ON GENETIC ALGORITHMS 被引量:9
1
作者 Cui ChangcaiChe RenshengYe DongHuang QingchengDepartment of Automatic Measurement and Control,Harbin Institute of Technology, Harbin 150001, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期167-170,共4页
A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and ... A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and the fitness function are derived from themathematical definition of dimensioning and tolerancing principles. Thirdly with the least squaressolution as the initial values, the whole implementation process of the algorithm is realized inwhich some key techniques, for example, variables representing, population initializing and suchbasic operations as selection, crossover and mutation, are discussed in detail. Finally, examplesare quoted to verify the proposed algorithm. The computation results indicate that the GA-basedoptimization method performs well on cylindricity evaluation. The outstanding advantages concludehigh accuracy, high efficiency and capabilities of solving complicated nonlinear and large spaceproblems. 展开更多
关键词 genetic algorithm (GA) cylindricity form error minimum zone
下载PDF
SOME MATHEMATICAL MODELS OF MEASUREMENT OF CYLINDRICITY ERROR WITH MULTI-POINT METHOD
2
作者 魏源迁 《Journal of China Textile University(English Edition)》 EI CAS 1996年第2期34-39,共6页
Through the analyses and researches on some related references of error separation techniques at home and abroad, this paper has built-up some mathematical models to measure and evaluate workpiece cylindricity error w... Through the analyses and researches on some related references of error separation techniques at home and abroad, this paper has built-up some mathematical models to measure and evaluate workpiece cylindricity error with multipoint method as well as unconstrained optimization methods. A few shortcomings of the technique to solve rotational error and cylindricity error are found, and some precise formulas are given. It is feasible by computer simulation tests. 展开更多
关键词 ERROR SEPARATION TECHNIQUES cylindricity ERROR MATHEMATICAL MODELS
下载PDF
Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks
3
作者 田十方 李彪 张钊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si... By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation. 展开更多
关键词 equation SOLITON CYLINDRICAL
下载PDF
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
4
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai Xue-qian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness Damping
下载PDF
Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation
5
作者 SUN Ying WANG Jia-dong +3 位作者 HUO Rui-li ZHOU Ding GU Zhen-yuan QIAN Wang-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期129-143,共15页
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma... The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter. 展开更多
关键词 cylindrical tanks multiple annular baffles equivalent analytical model soil−structure interaction subdomain method dynamic response
下载PDF
Measurement Uncertainty Analysis of the Rotary-scan Method for the Measurable Dimension of Cylindrical Workpieces
6
作者 Jiali Zhao Liang Zhang +2 位作者 Dan Wu Bobo Shen Qiaolin Li 《Instrumentation》 2024年第1期10-17,共8页
The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a dia... The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces. 展开更多
关键词 measurement uncertainty rotary-scan cylindrical workpiece various dimensions
下载PDF
Study of Axisymmetric Infinite Guide Lined with Locally Reacting Material without Flow Using DtN Operators
7
作者 Boureima Ouedraogo Emmanuel Redon 《Open Journal of Applied Sciences》 2024年第2期572-588,共17页
The present work proposed a new method for the modeling by the finite element method of the acoustic propagation problems in infinite axisymmetric cylindrical guides lined with locally reacting absorbent materials wit... The present work proposed a new method for the modeling by the finite element method of the acoustic propagation problems in infinite axisymmetric cylindrical guides lined with locally reacting absorbent materials without flow. The method deals with the development of an efficient transparent boundary condition based on DtN operators. The method developed in this study is successfully applied to a straight axisymmetric lined guide by imposing a mode on one of the artificial boundaries of the truncated guide. The results are in good agreement with analytical solutions. Applying the method for a non-uniform axisymmetric lined guide which is a complex case, proved its effectiveness and the results compared to those of PML layers are in very good agreement. 展开更多
关键词 DtN Operator Axisymmetric Cylindrical Guides Finite Element Method Modes
下载PDF
Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface 被引量:1
8
作者 Jiuxuan Liu Yong Zeng +3 位作者 Xueya Zhao Hongbo Chen Bin Yan Qian Lu 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2499-2518,共20页
A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workp... A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications. 展开更多
关键词 Cylindrical surface CFD numerical simulation film-forming regularity variable position spray prediction of film thickness distribution
下载PDF
The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches
9
作者 Dongxu DU Jun YANG +2 位作者 Wei SUN Hongwei MA Kunpeng XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1675-1700,共26页
By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteri... By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect. 展开更多
关键词 cylindrical shell vibration reduction analysis piezoelectric shunt semianalytical modeling experimental study
下载PDF
Gas liquid cylindrical cyclone flow regime identification using machine learning combined with experimental mechanism explanation
10
作者 Zhao-Ming Yang Yu-Xuan He +6 位作者 Qi Xiang Enrico Zio Li-Min He Xiao-Ming Luo Huai Su Ji Wang Jin-Jun Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期540-558,共19页
The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow... The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed. 展开更多
关键词 Gas liquid cylindrical cyclone Machine learning Flow regimes identification Mechanism explanation ALGORITHMS
下载PDF
Superscattering of Underwater Sound via Deep Learning Approach
11
作者 缪文杰 令狐志盎 +2 位作者 杜秋姣 澎湃 刘丰铭 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第1期33-36,共4页
We design a multilayer cylindrical structure to realize superscattering of underwater sound. Because of the near degeneracy of resonances in multiple channels of the structure, the scattering contributions from these ... We design a multilayer cylindrical structure to realize superscattering of underwater sound. Because of the near degeneracy of resonances in multiple channels of the structure, the scattering contributions from these resonances can overlap to break the single-channel limit of subwavelength objects. However, tuning the design parameters to achieve the target response is an optimization process that is tedious and time-consuming. Here,we demonstrate that a well-trained tandem neural network can deal with this problem efficiently, which can not only forwardly predict the scattering spectra of the multilayer structure with high precision, but also inversely design the required structural parameters efficiently. 展开更多
关键词 MULTILAYER consuming CYLINDRICAL
下载PDF
Observation of plasma dynamics in a theta pinch by a novel method
12
作者 Zhao Wang Rui Cheng +9 位作者 Guodong Wang Xuejian Jin Yong Tang Yanhong Chen Zexian Zhou Lulin Shi Yuyu Wang Yu Lei Xiaoxia Wu Jie Yang 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第4期28-36,共9页
A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device.By measuring simultaneously the temporal profiles of multipl... A novel experimental method is proposed for observing plasma dynamics subjected to magnetic fields based on a newly developed cylindrical theta-pinch device.By measuring simultaneously the temporal profiles of multiple parameters including the drive current,luminosity,plasma density,and plasma temperature,it provides a basis for observing the plasma dynamics of the theta pinch,such as shock transport and magnetohydrodynamic instability.We show that the plasma evolution can be distinguished as three phases.First,in the radial implosion phase,the trajectories of the current sheath and shock wave are ascertained by combining experimental data with a snowplow model(Lee model)in a self-consistent way.Second,in the axial flow phase,we demonstrate that m=0(sausage)instability associated with the plasma axial flow suppresses the plasma end-loss.Third,in the newly observed anomalous heating phase,the lower-hybrid-drift instability may develop near the current sheath,which induces anomalous resistivity and enhanced plasma heating.The present experimental data and novel method offer better understanding of plasma dynamics in the presence of magnetic fields,thereby providing important support for relevant research in magneto-inertial fusion. 展开更多
关键词 DYNAMICS thereby CYLINDRICAL
下载PDF
Numerical study on the dynamic fracture of explosively driven cylindrical shells
13
作者 Zhi-yong Yin Xiao-wei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期154-168,共15页
Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,a... Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,and fragment distribution characteristics of explosively driven metal shells.In this study,we used the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method and the fluid-structure interaction method to perform a three-dimensional numerical simulation of the expansion and fracture of a metal cylindrical shell.Our method combined the advantages of the FEM and SPH,avoiding system mass loss,energy loss,and element distortion;in addition,the proposed method had a good simulation effect on the interaction between detonation waves and the cylindrical shell.The simulated detonation wave propagation,shell damage morphology,and fragment velocity distribution were in good agreement with theoretical and experimental results.We divided the fragments into three regions based on their shape characteristics.We analyzed the failure mode and formation process of fragments in different regions.The numerical results reproduced the phenomenon in which cracks initiated from the inner surface and extended to the outer surface of the cylindrical shell along the 45°or 135°shear direction.In addition,fragments composed of elements are identified,and the mass and characteristic lengths of typical fragments at a stable time are provided.Furthermore,the mass and size distribution characteristics of the fragments were explored,and the variation in the fitting results of the classical distribution function under different explosion pressures was examined.Finally,based on mathematical derivation,the distribution formula of fragment velocity was improved.The improved formula provided higher accuracy and could be used to analyze any metal cylindrical shells with different length-to-diameter ratios. 展开更多
关键词 Metal cylindrical shell Shear failure Fragment distribution Numerical simulation Fragment velocity
下载PDF
Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
14
作者 Soheil Oveissi Aazam Ghassemi +2 位作者 Mehdi Salehi S.Ali Eftekhari Saeed Ziaei-Rad 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期511-528,共18页
We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love,... We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases. 展开更多
关键词 BUCKLING nonlocal cylindrical shell model anofluid-nanostructure interaction carbon nanotubes
下载PDF
Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters
15
作者 Yi Fan Li Chen +2 位作者 Zhan Li Heng-bo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期83-108,共26页
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper... Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures. 展开更多
关键词 Cylindrical charge Secondary peak overpressure Aspect ratio ORIENTATION Detonation initiation point Blast loading model
下载PDF
Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam
16
作者 张旭 王兆华 +4 位作者 王羡之 李佳文 李佳俊 赵国栋 魏志义 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期448-452,共5页
A cylindrical vector beam is utilized to enhance the energy scale of the pulse post-compressed in a bulk-material Herriott multi-pass cell(MPC).The method proposed here enables,for the first time to the best of our kn... A cylindrical vector beam is utilized to enhance the energy scale of the pulse post-compressed in a bulk-material Herriott multi-pass cell(MPC).The method proposed here enables,for the first time to the best of our knowledge,pulse compression from 14 ps down to 475 fs with throughput energy beyond 1 mJ,corresponding to a compression ratio of 30,which is the highest pulse energy and compression ratio in single-stage bulk-material MPCs.Furthermore,we demonstrate the characteristic of the vector polarization beam is preserved in the MPC. 展开更多
关键词 cylindrical vector beam post-compression multi-pass cell
下载PDF
Finite deformation analysis of the rotating cylindrical hollow disk composed of functionally-graded incompressible hyper-elastic material
17
作者 Libiao XIN Yang WANG +1 位作者 Zhiqiang LI Y.B.LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1367-1384,共18页
The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic ... The deformations and stresses of a rotating cylindrical hollow disk made of incompressible functionally-graded hyper-elastic material are theoretically analyzed based on the finite elasticity theory.The hyper-elastic material is described by a new micro-macro transition model.Specially,the material shear modulus and density are assumed to be a function with a power law form through the radial direction,while the material inhomogeneity is thus reflected on the power index m.The integral forms of the stretches and stress components are obtained.With the obtained complicated integral forms,the composite trapezoidal rule is utilized to derive the analytical solutions,and the explicit solutions for both the stretches and the stress components are numerically obtained.By comparing the results with two classic models,the superiority of the model in our work is demonstrated.Then,the distributions of the stretches and normalized stress components are discussed in detail under the effects of m.The results indicate that the material inhomogeneity and the rotating angular velocity have significant effects on the distributions of the normalized radial and hoop stress components and the stretches.We believe that by appropriately choosing the material inhomogeneity and configuration parameters,the functionally-graded material(FGM)hyper-elastic hollow cylindrical disk can be designed to meet some unique requirements in the application fields,e.g.,soft robotics,medical devices,and conventional aerospace and mechanical industries. 展开更多
关键词 functionally-graded material(FGM) INCOMPRESSIBLE hyper-elastic model rotating hollow cylindrical disk
下载PDF
Alfvén continuum in the presence of a magnetic island in a cylinder configuration
18
作者 杨骏辉 曹锦佳 +2 位作者 赵建华 戴勇智 向东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期40-50,共11页
In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The struc... In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island. 展开更多
关键词 Alfvén waves cylindrical geometry magnetic island continuum coupling
下载PDF
Improving resolution of superlens based on solid immersion mechanism
19
作者 郝占磊 周杨阳 +2 位作者 吴贝 刘益能 陈焕阳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期21-26,共6页
Super-resolution imaging with superlens has been one of the fundamental research topics. Unfortunately, the resolution of superlens is inevitably restrained by material loss. To address the problem, we introduce the s... Super-resolution imaging with superlens has been one of the fundamental research topics. Unfortunately, the resolution of superlens is inevitably restrained by material loss. To address the problem, we introduce the solid immersion mechanism into the slab superlens and the cylindrical superlens. The proposed solid immersion slab superlens(SISSL) and the solid immersion cylindrical superlens(SICSL) can improve the resolution by converting evanescent wave to propagating wave using high refractive index materials. From the perspective of applications, the cylindrical superlens with finite cross section and the ability of magnification or demagnification has more advantages than the slab superlens. Therefore,we focus on demonstrating analytically the super-resolution imaging of SICSL. Due to the impedance mismatching caused by solid immersion mechanism, the whispering gallery modes(WGMs) are excited between SICSL and the air interface.We clarify the excitation conditions of WGMs and analyze their influence on the imaging quality of SICSL. The SISSL and SICSL may pave a way to apply in lithography technique and real-time biomolecular imaging in future. 展开更多
关键词 super-resolution imaging material loss solid immersion cylindrical superlens whispering gallery modes
下载PDF
Undrained semi-analytical solution for cylindrical cavity expansion in anisotropic soils under biaxial stress conditions
20
作者 Lele Hou Xiaolin Weng +1 位作者 Jibo Hu Rongming Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1284-1297,共14页
This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simula... This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simulate the elastoplastic behavior of soil.The cavity expansion is treated as an initial value problem and solved as a system of eight first-order ordinary differential equations including four stress components and four anisotropic parameters.The results are validated by comparing the new solutions with existing ones.The distributions of stress components and anisotropic parameters around the cavity wall,the expansion process,the stress yield trajectory of a soil element and the shape and size of elastoplastic boundary are further investigated to explore the cavity expansion response of soils under biaxial in situ stresses.The results of extensive parameters analysis demonstrate that the circumferential position of the soil element and the anisotropy of the soils have noticeable impacts on the expansion response under biaxial in situ stresses.Since the present solution not only considers the anisotropy and anisotropy evolution of natural soil,but also eliminates the conventional assumption of uniform radial pressure,the solution is better than other theoretical solutions to explain the pressure test and pile installation effect of shallow saturated soil. 展开更多
关键词 Cylindrical cavity expansion Anisotropic soil Undrained solution Biaxial in situ stresses
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部