期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于点云的轻量化目标检测算法CYM-Net
1
作者 薛永江 王巍 +2 位作者 张景峰 姚晨阳 宋庆增 《光电子.激光》 CAS CSCD 北大核心 2024年第11期1174-1182,共9页
目标检测在机器人、自动驾驶等实际应用领域中具有广泛的应用。在这些场景下,目标检测任务需要在资源有限的平台上实时执行,对目标检测算法的参数量和检测速度有着较高的要求,因此需要实现目标检测算法的轻量化和高效化。然而传统的卷... 目标检测在机器人、自动驾驶等实际应用领域中具有广泛的应用。在这些场景下,目标检测任务需要在资源有限的平台上实时执行,对目标检测算法的参数量和检测速度有着较高的要求,因此需要实现目标检测算法的轻量化和高效化。然而传统的卷积神经网络(convolutional neural networks,CNNs)由于网络结构复杂、对算力要求较高,难以满足移动端的应用需求。为解决以上问题,本文提出了一种基于点云数据的一阶段轻量化目标检测算法CYM-Net模型。该模型融合了MobileNetV3的bneck模块设计思想和YOLOv4目标检测思想,并对特征金字塔进行了改进,从而显著减少了模型的参数量。本文在KITTI数据集上对CYM-Net模型进行了训练和验证。实验结果表明,CYM-Net模型在鸟瞰图和3D检测两个任务上均展现出更优异的性能,并且其检测速度也优于其他方法。通过本研究,本文为机器人、自动驾驶等领域的目标检测问题提供了一种高效轻量化的解决方案。 展开更多
关键词 点云数据 一阶段目标检测 cym-net 轻量化模型 特征金字塔
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部