The non-isothermal decomposition reaction of Nd[(C_5H_ 10NS_2)_3(C_ 12H_8N_2)] were carried out by means of TG-DTG and the thermal decomposition mechanism, and the associated kinetics was investigated. The kinetic par...The non-isothermal decomposition reaction of Nd[(C_5H_ 10NS_2)_3(C_ 12H_8N_2)] were carried out by means of TG-DTG and the thermal decomposition mechanism, and the associated kinetics was investigated. The kinetic parameters are obtained from an analysis of the TG-DTG curves at different heating rate by integral and differential methods. The most probable kinetic model function of the decomposition reaction is Maple Power of n=3/2, f(α)=2/3α -1/2 and the apparent activation energy E is 116.67 kJ·mol -1 and the pre-exponential factor lg[A/s -1] is 7.6891.展开更多
Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these...Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these pretreated catalysts were aged at 1000 °C for 3 h to study their anti-aging properties. The catalytic activities of the catalysts were investigated detailedly, and the results showed that the catalyst pretreated at 800 °C before aging treatment possessed the best anti-aging performance for CHoxidation. XRD and XPS results indicated that well-crystallized CeOparticles were formed during calcinations at 800 °C, which made CeOan effective promoter. HRTEM revealed that Pd particles found on the edge of CeOover the aged catalyst pretreated at 800 °C were relatively smaller than those over the catalysts without pretreatment. H-TPR and XPS results also implied that the interaction between well-crystallized CeOand Pd suppressed the deactivation of PdO sites and further enhanced the catalytic performance.展开更多
文摘The non-isothermal decomposition reaction of Nd[(C_5H_ 10NS_2)_3(C_ 12H_8N_2)] were carried out by means of TG-DTG and the thermal decomposition mechanism, and the associated kinetics was investigated. The kinetic parameters are obtained from an analysis of the TG-DTG curves at different heating rate by integral and differential methods. The most probable kinetic model function of the decomposition reaction is Maple Power of n=3/2, f(α)=2/3α -1/2 and the apparent activation energy E is 116.67 kJ·mol -1 and the pre-exponential factor lg[A/s -1] is 7.6891.
基金Project supported by the National Natural Science Foundation of China(21173153)the National Hi-tech Research Development Program of China(863 Program,2013AA065304)the Sichuan Science and Technology Agency Supported Project(2012FZ0008)
文摘Fresh Pd/CeO/AlOclose coupled catalyst was prepared by the stepwise impregnation method and calcined at 550 °C for 3 h, which was then pretreated at 700, 800, and 900 °C for 3 h, respectively. Finally, these pretreated catalysts were aged at 1000 °C for 3 h to study their anti-aging properties. The catalytic activities of the catalysts were investigated detailedly, and the results showed that the catalyst pretreated at 800 °C before aging treatment possessed the best anti-aging performance for CHoxidation. XRD and XPS results indicated that well-crystallized CeOparticles were formed during calcinations at 800 °C, which made CeOan effective promoter. HRTEM revealed that Pd particles found on the edge of CeOover the aged catalyst pretreated at 800 °C were relatively smaller than those over the catalysts without pretreatment. H-TPR and XPS results also implied that the interaction between well-crystallized CeOand Pd suppressed the deactivation of PdO sites and further enhanced the catalytic performance.