Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum ...Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.展开更多
Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole...Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole pairs’separation poses challenges in attaining satisfactory hydrogen production efficiency.Herein,we synthesized the exceptional performance of highly crystalline C_(3)N_(5)(HC–C_(3)N_(5))nanosheet as a photocatalyst,demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h^(-1)g^(-1),which surpasses that of bulk C_(3)N_(5)(B–C_(3)N_(5))by a factor of 3.27.Experimental and theoretical analyses reveal that HC-C_(3)N_(5)nanosheets exhibit intriguing macroscopic photoinduced color changes,effectively broadening the absorption spectrum and significantly enhancing the generation of excitons.Besides,the cyano groups in HC-C_(3)N_(5)efficiently captures and converts photoexcited electrons into bound states,thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions.This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.展开更多
基金the funding support from Shanghai Sailing Program (19YF1411000)National Natural Science Foundation of China (21878080, 21808058)Ningxia Science Foundation (2019AAC03282)。
文摘Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.
基金supported by the National Natural Science Foundation of China(No.22006057,21906072 and 21908115)Postgraduate Research&Practice Innovation Program of Jiangsu Province(China)(SJCX23_2197)Natural Science Foundation of Zhejiang Province of China(LY20E080014).
文摘Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole pairs’separation poses challenges in attaining satisfactory hydrogen production efficiency.Herein,we synthesized the exceptional performance of highly crystalline C_(3)N_(5)(HC–C_(3)N_(5))nanosheet as a photocatalyst,demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h^(-1)g^(-1),which surpasses that of bulk C_(3)N_(5)(B–C_(3)N_(5))by a factor of 3.27.Experimental and theoretical analyses reveal that HC-C_(3)N_(5)nanosheets exhibit intriguing macroscopic photoinduced color changes,effectively broadening the absorption spectrum and significantly enhancing the generation of excitons.Besides,the cyano groups in HC-C_(3)N_(5)efficiently captures and converts photoexcited electrons into bound states,thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions.This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.