As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR el...As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR electrocatalysts is far from enough and a systematic research is needed to gain a better improvement. This article presents that 2 D C_(3)N_(4)-NV with a large specific surface area and abundant nitrogen vacancies is prepared by a simple and feasible method, and used as a metal-free catalyst for electrocatalytic NRR. Experiment result and density functional theory(DFT) calculation reveal that nitrogen vacancies in 2 D C_(3)N_(4)-NV can act as an efficient active site for catalytic NRR, which is conducive to capturing and activating N_(2), lowering Gibbs free energy(DG) in reaction and inhibiting hydrogen evolution reaction(HER) at the same time. In addition, the larger specific surface area also makes more active site exposed, which is good for the contact between the electrolyte and the active site, thus enhancing its NRR activity. The electrocatalyst shows an excellent catalytic activity for NRR in 0.1 M HCl, including Faradaic efficiency of 10.96%, NH_(3) yields of 17.85 lg h^(-1) mg_(cat)^(-1)., and good stability(over 20 h).展开更多
基金funded by the National Natural Science Foundation of China (21802058 and 21872066)the Fundamental Research Funds for the Central Universities (China, lzujbky-2020-42)the Natural Science Foundation of Gansu Province (20JR5RA225)。
文摘As a substitute for synthetic ammonia under mild condition, electrocatalytic nitrogen reduction reaction(NRR) provides a hopeful approach for the development of ammonia. Nevertheless, the current development of NRR electrocatalysts is far from enough and a systematic research is needed to gain a better improvement. This article presents that 2 D C_(3)N_(4)-NV with a large specific surface area and abundant nitrogen vacancies is prepared by a simple and feasible method, and used as a metal-free catalyst for electrocatalytic NRR. Experiment result and density functional theory(DFT) calculation reveal that nitrogen vacancies in 2 D C_(3)N_(4)-NV can act as an efficient active site for catalytic NRR, which is conducive to capturing and activating N_(2), lowering Gibbs free energy(DG) in reaction and inhibiting hydrogen evolution reaction(HER) at the same time. In addition, the larger specific surface area also makes more active site exposed, which is good for the contact between the electrolyte and the active site, thus enhancing its NRR activity. The electrocatalyst shows an excellent catalytic activity for NRR in 0.1 M HCl, including Faradaic efficiency of 10.96%, NH_(3) yields of 17.85 lg h^(-1) mg_(cat)^(-1)., and good stability(over 20 h).