Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in...Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.展开更多
In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composi...In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃.展开更多
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ...The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.展开更多
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the...Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.展开更多
The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add...The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of...The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.展开更多
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE...In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.展开更多
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi...As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.展开更多
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu...Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.展开更多
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist...Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.展开更多
The high temperature compression test of Be/2024Al composites with 62wt%Be was conducted at 500–575℃ and strain rate of0.003–0.1 s^(-1).The strain-compensated Arrhenius model and modified Johnson–Cook model were i...The high temperature compression test of Be/2024Al composites with 62wt%Be was conducted at 500–575℃ and strain rate of0.003–0.1 s^(-1).The strain-compensated Arrhenius model and modified Johnson–Cook model were introduced to predict the hot deformation behavior of Be/2024Al composites.The result shows that the activation energy of Be/2024Al composites was 363.364 k J·mol^(-1).Compared with composites reinforced with traditional ceramics,Be/2024Al composites can be deformed with ultra-high content of reinforcement,attributing to the deformable property of Be particles.The average relative error of the two models shows that modified Johnson–Cook model was more suitable for low temperature condition while strain-compensated Arrhenius model was more suitable for high temperature condition.The processing map was generated and a hot extrusion experiment was conducted according to the map.A comparation of the microstructure of Be/2024Al composites before and after extrusion shows that the Be particle deformed coordinately with the matrix and elongated at the extrusion direction.展开更多
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra...Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.展开更多
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi...Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.展开更多
Cf/Al composites and TiAl alloy were joined by combustion synthesis in different joining conditions. Effects of additive Cu, joining temperature and holding time on joint microstructure and shear strength were charact...Cf/Al composites and TiAl alloy were joined by combustion synthesis in different joining conditions. Effects of additive Cu, joining temperature and holding time on joint microstructure and shear strength were characterized by employing DTA, SEM, EDS, XRD and shear test. Results show that the additive Cu in the Ti-Al-C interlayer could significantly decrease the reaction temperature owing to the emergence of Al--Cu eutectic liquid. Reaction degree of the interlayer was influenced by joining temperature and holding time. Due to the barrier action of formed TiAl3 layer, reaction rate of Ti and Al was determined by the atoms diffusion. The reaction between Ti and AI was more sensitive to the joining temperature rather the holding time. The joints shear strength was influenced by joining condition directly. The maximum shear strength of CS joints was 25.89 MPa at 600 ℃ for 30 rain under 5 MPa. Interface evolution mechanism of the CS joint was analyzed based on the experimental results and phase diagram.展开更多
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted...The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface con...35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface conditions were evaluated by tensile modules of elasticity and Brinell hardness measurement. The results show that the overall Si Cp/Al interface condition in this experiment is good and three kinds of Si Cp/Al interfaces are present in the composites, which include vast majority of clean planer interfaces, few slight reaction interfaces and tiny amorphous interfaces. The combination mechanism of Si C and Al in the clean planer interface is the formation of a semi-coherent interface by closely matching of atoms and there are no fixed or preferential crystallographic orientation relationships between Si C and Al. MgAl2O4 spinel particles act as an intermediate to form semi-coherent interface with SiC and Al respectively at the slight reaction interfaces. When the composite is aged at 190 °C for 9 h after being solution-treated at 510 °C for 2 h, numerous discoid-shaped and needle-shaped nanosized precipitates dispersively exist in the composite and are semi-coherent of low mismatch with Al matrix. The Brinell hardness of composites arrives peak value at this time.展开更多
In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-sit...In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.展开更多
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(SKLSP201103)supported by the Fund of the State Key Laboratory of Solidification ProcessingProject(B08040)supported by the Introducing Talents of Discipline toUniversities,China
文摘Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.
基金the financial support from Ningbo Institute of Technology, Beihang University
文摘In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃.
基金financially supported by the National Key Research and Development Program of China(No.2022YFE0121400)the National Natural Science Foundation of China(Nos.52071117,52111530297,51601047)+1 种基金the Heilongjiang Provincial Science Fund for Distinguished Young Scholars,China(No.JQ2021E002)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120016)。
文摘The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.
基金Funded by the National Natural Science Foundation of China(No.52104363)。
文摘Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金financially supported by the National Natural Science Foundation of China(Grant No.51075101)
文摘The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa.
基金financial supports from the National Natural Science Foundation of China (No. 51875062)China Postdoctoral Science Foundation (No. 2021M700567)。
文摘In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872341 and 22075261)。
文摘As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.
文摘Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.
文摘Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.
基金National Natural Science Foundation of China(Nos.52171136,51871072,51871073)the Excellent Youth Scholars project of Natural Science Foundation of Heilongjiang Province(No.YQ2021E 016)Heilongjiang Touyan Team Program。
文摘The high temperature compression test of Be/2024Al composites with 62wt%Be was conducted at 500–575℃ and strain rate of0.003–0.1 s^(-1).The strain-compensated Arrhenius model and modified Johnson–Cook model were introduced to predict the hot deformation behavior of Be/2024Al composites.The result shows that the activation energy of Be/2024Al composites was 363.364 k J·mol^(-1).Compared with composites reinforced with traditional ceramics,Be/2024Al composites can be deformed with ultra-high content of reinforcement,attributing to the deformable property of Be particles.The average relative error of the two models shows that modified Johnson–Cook model was more suitable for low temperature condition while strain-compensated Arrhenius model was more suitable for high temperature condition.The processing map was generated and a hot extrusion experiment was conducted according to the map.A comparation of the microstructure of Be/2024Al composites before and after extrusion shows that the Be particle deformed coordinately with the matrix and elongated at the extrusion direction.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NT2021020)。
文摘Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.
文摘Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials.
基金financially supported by the National Natural Science Foundation of China (No.51075101)
文摘Cf/Al composites and TiAl alloy were joined by combustion synthesis in different joining conditions. Effects of additive Cu, joining temperature and holding time on joint microstructure and shear strength were characterized by employing DTA, SEM, EDS, XRD and shear test. Results show that the additive Cu in the Ti-Al-C interlayer could significantly decrease the reaction temperature owing to the emergence of Al--Cu eutectic liquid. Reaction degree of the interlayer was influenced by joining temperature and holding time. Due to the barrier action of formed TiAl3 layer, reaction rate of Ti and Al was determined by the atoms diffusion. The reaction between Ti and AI was more sensitive to the joining temperature rather the holding time. The joints shear strength was influenced by joining condition directly. The maximum shear strength of CS joints was 25.89 MPa at 600 ℃ for 30 rain under 5 MPa. Interface evolution mechanism of the CS joint was analyzed based on the experimental results and phase diagram.
基金Projects(50971038,51174058)supported by the National Natural Science Foundation of China
文摘The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
基金Project(51371077)supported by the National Natural Science Foundation of China
文摘35% SiCp/2024 Al(volume fraction) composite was prepared by powder metallurgy method. The microstructures of Si Cp/Al interfaces and precipitate phase/Al interfaces were characterized by HRTEM, and the interface conditions were evaluated by tensile modules of elasticity and Brinell hardness measurement. The results show that the overall Si Cp/Al interface condition in this experiment is good and three kinds of Si Cp/Al interfaces are present in the composites, which include vast majority of clean planer interfaces, few slight reaction interfaces and tiny amorphous interfaces. The combination mechanism of Si C and Al in the clean planer interface is the formation of a semi-coherent interface by closely matching of atoms and there are no fixed or preferential crystallographic orientation relationships between Si C and Al. MgAl2O4 spinel particles act as an intermediate to form semi-coherent interface with SiC and Al respectively at the slight reaction interfaces. When the composite is aged at 190 °C for 9 h after being solution-treated at 510 °C for 2 h, numerous discoid-shaped and needle-shaped nanosized precipitates dispersively exist in the composite and are semi-coherent of low mismatch with Al matrix. The Brinell hardness of composites arrives peak value at this time.
基金Project (2008AA03A239) supported by the High-tech Research and Development Program of China
文摘In-situ TiB2 particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K2TiF6 and KBF4 salts. The effects of CeO2 additive on the microstructure and properties of in-situ TiB2/2014 composite were investigated. The results showed that CeO2 at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO2 additive was added, the dispersion of TiB2 particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB2 particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO2, the hardness, tensile strength, yield strength and elongation of the composite with CeO2 addition are greatly increased in as-cast condition.