期刊文献+
共找到3,017篇文章
< 1 2 151 >
每页显示 20 50 100
Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiC_f/SiC composites with PyC interphase 被引量:2
1
作者 史毅敏 罗发 +3 位作者 丁冬海 穆阳 周万城 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1484-1489,共6页
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C... The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior. 展开更多
关键词 sicf/sic composites thermal oxidation dielectric properties microwave absorbing mechanical properties
下载PDF
Effects of dip-coated BN interphase on mechanical properties of SiC_f/SiC composites prepared by CVI process 被引量:2
2
作者 周洋 周万城 +1 位作者 罗发 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1400-1406,共7页
BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structur... BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably. 展开更多
关键词 sicf/sic composites BN interphase DIP-COATING CVI mechanical properties
下载PDF
Processing and characterization of C_f/SiC composites
3
作者 Xinbo He Bin Ye +2 位作者 Xuanhui Qu Changrui Zhang Xingui Zhou 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期460-463,共4页
Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure an... Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure and mechanical properties of the composites was investigated. It was found that the composite prepared by PP-HP exhibits a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface and the degradation of the fibers caused by a higher processing temperature. On the contrary, the composite prepared by PIP shows a tough fracture behavior, which could be rationalized on the basis of a weakly bonded fiber/matrix interface as well as a higher strength retention of the fibers. As a result, in comparison with the composite prepared by PP-HP, the composite prepared by PIP achieves better mechanical properties with a flexural strength of 573.4 MPa and a fracture toughness of 17.2 MPa.m^1/2. 展开更多
关键词 Cf/sic composites fabrication methods mechanical properties
下载PDF
Effect of fiber characteristics on fracture behavior of C_f/SiC composites
4
作者 何新波 杨辉 张新明 《中国有色金属学会会刊:英文版》 CSCD 2002年第1期30-33,共4页
C f/SiC composites were prepared by precursor pyrolysis hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fibe... C f/SiC composites were prepared by precursor pyrolysis hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fiber T300 (below 1?500?℃) was much lower than that of fiber M40JB (over 2?000?℃), fiber T300 had lower degree of graphitization and consisted of more impurities compared with fiber M40JB, suggesting that T300 exhibits higher chemical activity. As a result, the composite with T300 showed a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface as well as the degradation of fibers during the preparation of the composite. However, the composite with M40JB exhibits a tough fracture behavior, which is primarily attributed to a weakly bonded fiber/matrix interface and higher strength retention of the fibers. 展开更多
关键词 光纤特性 断裂性能 Cf/sic合成物 光纤增强陶瓷合成物
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
5
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Recent advances in joining of SiC-based materials(monolithic SiC and SiC_f/SiC composites):Joining processes,joint strength, and interfacial behavior 被引量:23
6
作者 Guiwu LIU Xiangzhao ZHANG +1 位作者 Jian YANG Gunjun QIAO 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第1期19-38,共20页
Silicon carbide(SiC) has been widely concerned for its excellent overall mechanical and physical properties, such as low density, good thermal-shock behavior, high temperature oxidation resistance, and radiation resis... Silicon carbide(SiC) has been widely concerned for its excellent overall mechanical and physical properties, such as low density, good thermal-shock behavior, high temperature oxidation resistance, and radiation resistance; as a result, the SiC-based materials have been or are being widely used in most advanced fields involving aerospace, aviation, military, and nuclear power. Joining of SiC-based materials(monolithic SiC and SiCf/SiC composites) can resolve the problems on poor processing performance and difficulty of fabrication of large-sized and complex-shaped components to a certain extent, which are originated from their high inherent brittleness and low impact toughness.Starting from the introduction to SiC-based materials, joining of ceramics, and joint strength characterization, the joining of SiC-based materials is reviewed by classifying the as-received interlayer materials, involving no interlayer, metallic, glass-ceramic, and organic interlayers. In particular, joining processes(involving joining techniques and parameter conditions), joint strength,interfacial microstructures, and/or reaction products are highlighted for understanding interfacial behavior and for supporting development of application-oriented joining techniques. 展开更多
关键词 sic CERAMICS sicF/sic composites joining JOINT strength INTERFACIAL behavior
原文传递
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
7
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven sicf/sic composites Damage and Failure Analysis Stitching Hole
下载PDF
A review of third generation SiC fibers and SiC_f/SiC composites 被引量:34
8
作者 Pengren Wang Fengqi Liu +2 位作者 Hao Wang Hao Li Yanzi Gou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2743-2750,共8页
Compared with the first and second generations SiC fibers, the third generation SiC fibers have obvious improvement in heat-resistance, oxidation-resistance and creep-resistance, which promote the development of SiCf/... Compared with the first and second generations SiC fibers, the third generation SiC fibers have obvious improvement in heat-resistance, oxidation-resistance and creep-resistance, which promote the development of SiCf/SiC composite materials. Therefore, the third generation SiC fibers have more advantages and broader prospects in engineering applications. In this paper, the fabrication and properties of the third generation SiC fibers are compared and discussed. The preparation processes of the third generation SiC fibers reinforced SiC matrix composites and their application in aeroengine and nuclear energy fields are summarized, while their future development is prospected as well. 展开更多
关键词 sic fiber Third generation compositE
原文传递
KD-S SiC_f/SiC composites with BN interface fabricated by polymer infiltration and pyrolysis process 被引量:14
9
作者 Honglei WANG Shitao GAO +4 位作者 Shuming PENG Xingui ZHOU Haibin ZHANG Xiaosong ZHOU Bin Li 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第2期169-177,共9页
Continuous silicon carbide fiber reinforced silicon carbide matrix(SiC_f/SiC) composites are attractive candidate materials for aerospace engine system and nuclear reactor system. In this paper, SiC_f/SiC composites w... Continuous silicon carbide fiber reinforced silicon carbide matrix(SiC_f/SiC) composites are attractive candidate materials for aerospace engine system and nuclear reactor system. In this paper, SiC_f/SiC composites were fabricated by polymer infiltration and pyrolysis(PIP) process using KD-S fiber as the reinforcement and the LPVCS as the precursor, while the BN interface layer was introduced by chemical vapor deposition(CVD) process using borazine as the single precursor. The effect of the BN interface layer on the structure and properties of the SiC_f/SiC composites was comprehensively investigated. The results showed that the BN interface layer significantly improved the mechanical properties of the KD-S SiC_f/SiC composites. The flexure strength and fracture toughness of the KD-S SiC_f/SiC composites were evidently improved from 314±44.8 to 818±39.6 MPa and 8.6± 0.5 to 23.0±2.2 MPa·m^(1/2), respectively. The observation of TEM analysis displayed a turbostratic structure of the CVD-BN interface layer that facilitated the improvement of the fracture toughness of the SiC_f/SiC composites. The thermal conductivity of KD-S SiC_f/SiC composites with BN interface layer was lower than that of KD-S SiC_f/SiC composites without BN interface layer, which could be attributed to the relative low thermal conductivity of BN interface layer with low crystallinity. 展开更多
关键词 silicon carbide(sic) composites interface layer polymer infiltration and pyrolysis(PIP) boron nitride(BN)
原文传递
Effect of properties of SiC fibers on longitudinal tensile behavior of SiC_f/Ti-6Al-4V composites 被引量:5
10
作者 李建康 杨延清 +2 位作者 原梅妮 罗贤 李丽丽 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期523-530,共8页
Three types of SiC fibers with different tensile strength were employed to prepare unidirectional titanium matrix composites. The strengths of the original SiC fibers and extracted fibers from the composites were meas... Three types of SiC fibers with different tensile strength were employed to prepare unidirectional titanium matrix composites. The strengths of the original SiC fibers and extracted fibers from the composites were measured. The results show that the mechanical properties of fibers are greatly damaged by the consolidation processing of the composite. The strength data of the extracted fibers are used to predict the strength of the composites according to two theoretic models. The Globe Load-Sharing(GLS) model overestimates the strength of the composites. If the Local Load-Sharing(LLS) model assumes that failure occurs after the formation of a cluster with three broken fibers, the model can predict the strength of the composites exactly. 展开更多
关键词 碳化硅光纤 复合材料 抗张强度
下载PDF
Fabrication of 2D C_f/SiC Composites by Liquid Silicon Infiltration
11
作者 LING Yihui JIANG Pinyi HUANG Xiangdong 《Journal of the Chinese Ceramic Society》 2015年第4期198-203,共6页
The carbon/carbon(C/C) composite was prepared by repeatedly overlapping the layers of 2D carbon cloths, and the 2D C_f/SiC composites were subsequently prepared in vacuum by a liquid silicon infiltration process. The ... The carbon/carbon(C/C) composite was prepared by repeatedly overlapping the layers of 2D carbon cloths, and the 2D C_f/SiC composites were subsequently prepared in vacuum by a liquid silicon infiltration process. The flexural strength of samples obtained under different preparation conditions was investigated. The results show that the composite has a better performance when the mass of silicon powder is 1.5 times greater than that of C/C composite, the temperature of silicon infiltration is 1550 ℃ and the holding time of silicon infiltration is 3 h. The density and flexural strength of the composite are 2.15 g/cm^3 and 128 MPa, respectively, and the thickness of the SiC layer is 12 μm. 展开更多
关键词 2D C_f/sic composites LIQUID silicon INFILTRATION preparation technology FLEXURAL STRENGTH
原文传递
Preparation and oxidation property of ZrB_2-MoSi_2/SiC coating on carbon/carbon composites 被引量:14
12
作者 张武装 曾毅 +2 位作者 GBOLOGAH Lemuel 熊翔 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1538-1544,共7页
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB... To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature. 展开更多
关键词 carbon/carbon composites ZrB2-MoSi2 sic COATING OXIDATION
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
13
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 C/C composites C/sic MOSI2 sic MULTILAYER COATING OXIDATION
下载PDF
Double SiC coating on carbon/carbon composites against oxidation by a two-step method 被引量:7
14
作者 孙粲 李贺军 +2 位作者 付前刚 张佳平 彭晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2107-2112,共6页
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer... To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating. 展开更多
关键词 carbon/carbon composites sic OXIDATION COATING
下载PDF
Microstructures and properties of Al-50%SiC composites for electronic packaging applications 被引量:10
15
作者 滕飞 余琨 +4 位作者 罗杰 房宏杰 史春丽 戴翌龙 熊汉青 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2647-2652,共6页
Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the p... Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the propertiesof the compositeswere investigated. The results show that SiC particles are distributed uniformly in the Al matrix. The coarse SiC particles result in higher coefficient of thermal expansion (CTE) and higher thermal conductivity (TC), while fine SiC particles decrease CTE and improve flexural strength of the composites. The morphology and size of SiC particles in the composite are not influenced by the annealing treatment at 400℃for 6h. However, the CTE and the flexural strength of annealed composites are decreased slightly, and the TCis improved. The TC, CTE and flexural strength of the Al/SiC composite with averageSiC particlesize of75 μm are 156 W/(m·K), 11.6×10^-6K^-1 and 229 MPa, respectively. 展开更多
关键词 Al-50%sic composites powder metallurgy thermal properties flexural strength electronic packagingmaterial
下载PDF
Effect of ZrC-SiC content on microstructure and ablation properties of C/C composites 被引量:3
16
作者 李军 杨鑫 +5 位作者 苏哲安 薛亮 钟平 李帅鹏 黄启忠 刘红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2653-2664,共12页
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/... C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively. 展开更多
关键词 ZRC sic C/C composites ZRC sic ablation precursorinfiltration and pyrolysis
下载PDF
Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites 被引量:5
17
作者 罗贤 李超 +4 位作者 杨延清 许海嫚 李晓宇 刘帅 李鹏涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1317-1325,共9页
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com... C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase. 展开更多
关键词 Mo coating TiAl alloy sic fiber titanium matrix composite interracial reaction thermal stability
下载PDF
Microstructure and thermophysical properties of SiC/Al composites mixed with diamond 被引量:6
18
作者 郭宏 韩媛媛 +2 位作者 张习敏 贾成厂 徐骏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期170-174,共5页
The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ... The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little. 展开更多
关键词 sic/Al composites mixed with diamond thermal conductivity thermal expansion coefficient MICROSTRUCTURE
下载PDF
Microstructure and properties of Al/Si/SiC composites for electronic packaging 被引量:13
19
作者 朱晓敏 于家康 王新宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1686-1692,共7页
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh... The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution. 展开更多
关键词 Al/Si/sic composite electronic packaging thermal properties flexural strength
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
20
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 C/C composite sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部