Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed ...Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.展开更多
The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing fr...The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.展开更多
The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochem...The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.展开更多
The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical...The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical microscopy and scanning electron microscopy,differential scanning calorimetry analysis,and tensile and creep tests.The results indicate that the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can refine the grains of the two alloys.At the same time,the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can effectively improve the tensile properties of the two alloys.In addition,the addition of 0.6%Ca can also improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy but is not beneficial to the creep properties of the Mg-4Y-1.2Mn-0.9Sc alloy.The different effects of minor Ca on the creep properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys are possibly related to the difference in the solid solubilities of Ce and Y in Mg.展开更多
Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obta...Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obtained for the Mg-Al alloy modified by combining Ca addition with carbon inoculation. Fe addition and addition sequence had no obvious effect on the grain refinement. Ca addition could effectively avoid grain-coarsening resulting from Fe in the carbon-inoculated Mg-Al alloy. The Al-C-O particles, actually being Al4C3, should act as potent substrates for a-Mg grains in the sample treated by combining Ca addition with carbon inoculation. However, the duplex-phase particles of AI4C3 coated on Al-Fe or Al-C-Fe should be the potent substrates for a-Mg grains if Fe existed in the Mg-Al melt. Ca addition can contribute to the formation of the particles of Al4C3 coated on Al-Fe or Al-C-Fe, regardless of the Fe addition sequence. The poisoning effect of Fe was effectively inhibited in the carbon-inoculated of Mg-Al alloy due to Ca addition, namely, Ca has a poisoning-free effect.展开更多
The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly com...The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.展开更多
The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the...The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the pristine Mg-30%Ca(mass fraction) alloy were characterized with scanning electron microscopy(SEM) and X-ray diffraction(XRD).The Mg-30%Ca alloy samples were immersed in the SBF for 90 d,and the morphology,composition and cytotoxicity of the final corrosion product were examined.It is found that Mg-30%Ca alloy is composed of α-Mg and Mg2 Ca phases.During the corrosion process in the SBF,the Mg2 Ca phase acts as an anode and the α-Mg phase acts as a cathode.The final corrosion product of the Mg-30%Ca alloy in SBF includes a small amount of black precipitates and white suspended particles.The white suspended particles are Mg(OH)2 and the black particles are believed to have a core-shell structure.The cytotoxicity experiments indicate that these black precipitates do not induce toxicity to cells.展开更多
A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructure...A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail.展开更多
The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ...The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.展开更多
The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations...The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.展开更多
A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simul...A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.展开更多
The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing ...The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing alloy wires mainly consist of Mg matrix and Ag17Mg54 phase,characterized by SEM,EDS,XRD and TEM.Tensile and knotting tests results demonstrate the superior mechanical properties of these alloy wires.Especially,Mg−1Zn−0.2Ca−4Ag alloy exhibits the highest mechanical properties,i.e.an ultimate tensile strength of 334 MPa and an elongation of 8.6%.Moreover,with increasing Ag content,the corrosion rates of these alloy wires remarkably increase due to the formation of more micro-galvanic coupling between Mg matrix and Ag17Mg54 phase,shown by mass loss and scanning Kelvin probe force microscopy(SKPFM)results.The present alloy can be completely degraded within 28 d,satisfying the property requirements of anastomotic nails.展开更多
A Pb-0.08Ca-2Sn alloy was subjected to rolling at room temperature to different final thicknesses.Annealing treatments at temperature ranging from 80 to 120 °C led to recrystallization of the samples as shown by ...A Pb-0.08Ca-2Sn alloy was subjected to rolling at room temperature to different final thicknesses.Annealing treatments at temperature ranging from 80 to 120 °C led to recrystallization of the samples as shown by resistivity and micro-hardness measurements.The deformation texture determined through X-ray diffraction is qualitatively the Brass type.The measured Lankford anisotropy parameter R and its evolution are close to the determined one using a self consistent approach.The R value evolution with angle to rolling direction shows the presence of planar anisotropy and poor drawability.The recrystallization in annealing at 80-120 °C is achieved within time period up to 3×104 s.The recrystallization texture is a retained deformation texture with an emerging Cube component.展开更多
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
The effects of addition of calcium up to 4 wt.% on the microstructure and creep properties of Mg-4 Sn alloys were investigated by the impression creep test. Impression creep tests were performed in temperature range b...The effects of addition of calcium up to 4 wt.% on the microstructure and creep properties of Mg-4 Sn alloys were investigated by the impression creep test. Impression creep tests were performed in temperature range between 445 and 475 K under normalized stresses σ/G(where σ is the stress;G is the shear modulus) between 0.0225 and 0.035. Optical microscopy and scanning electron microscopy were used to study the microstructure of samples. It is observed that the addition of Ca more than 2 wt.% suppresses less stable Mg Sn2 phase, and instead forms more thermally stable phases of Ca-Mg-Sn and Mg2 Ca at the grain boundaries which improve the creep resistance of Mg-4 Sn alloys. According to the stress exponents(6.04<n<6.89) and activation energies(101.37 k J/mol<Q<113.8 k J/mol) which were obtained from the impression creep tests, it is concluded that the pipe diffusion climb controlled dislocation creep is the dominant creep mechanism.展开更多
Mg−Al layered double hydroxides(LDHs),produced on cast Mg−xCa(x=0.5,0.8,2.0,wt.%)alloys by an in-situ growth method,showed good corrosion resistance compared to the bare magnesium substrate.The influence mechanism of ...Mg−Al layered double hydroxides(LDHs),produced on cast Mg−xCa(x=0.5,0.8,2.0,wt.%)alloys by an in-situ growth method,showed good corrosion resistance compared to the bare magnesium substrate.The influence mechanism of the second phase(Mg_(2)Ca)on LDHs production was investigated.Increasing Ca content increased the amount of Mg_(2)Ca,decreasing the grain size and the corrosion rate of the alloys.The increased amount of the second phase particles and the grain refinement promoted the growth of LDHs,and thus led to the decreasing of corrosion rate of the Mg−xCa alloys with LDHs.A higher Mg_(2)Ca amount resulted in forming fluffy LDHs.Due to the dual effects of the second phase(Mg_(2)Ca)for LDHs growth and microgalvanic corrosion,LDHs/Mg−0.8Ca showed the lowest corrosion rate.展开更多
Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,ele...Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,electron back-scattered diffraction,and transmission electron microscopy.The mechanical properties were determined by the tensile test.The peak-aged sample shows fine recrystallized grains with an average grain size of 1.7μm.Area fraction of Al−Ca particles in the alloy increases significantly after peak aging.Meanwhile,botháañandác+añdislocations were observed to remain in the alloy after hot extrusion.Thus,the peak-aged sample exhibits simultaneously high strength and good ductility with the ultimate tensile stress,tensile yield stress,and tension fracture elongation of 320 MPa,314 MPa,and 19.0%,respectively.展开更多
The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe ana...The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe analysis and X-ray diffraction).Based on the phase equilibria data obtained,the experimental projection of the liquidus surface and solid state phase-field distribution of the Al?Ca?Ni?La system have been proposed.Microstructure studies reveal that the alloys with the 2?4 wt.%Ca,2?4 wt.%Ni and 1?3 wt.%La ranges have an ultra-fine hypoeutectic structure with 30%volume fraction of eutectic intermetallics,which allows one to classify these alloys as natural Al-matrix composites.The ultra-fine eutectic structure produces significant strengthening,the magnitude of which can be well described using the modified Orowan looping mechanism model.Small additives of Zr and Sc(0.2 and 0.1 wt.%,respectively)lead to significant strengthening(by^25%)due to the formation of L12 type phase(Al3(Zr,Sc))nanoparticles during annealing of the alloy at 350?400℃.Due to the high volume fraction of eutectic intermetallics,the new alloys have low coefficients of thermal expansion and high thermal stability of the structure and mechanical properties.展开更多
To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containin...To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containing(2Ca)and Mg_(2)Ca-containing(4Ca)alloys.At the beginning of corrosion,the two as-cast alloys are corroded slowly compared with ECAP alloys.With prolonging the corrosion time,the corrosion of ECAP alloys becomes slighter than that of as-cast alloys,which is mainly ascribed to the dispersion and refinement of the second phase in ECAP alloys.Moreover,the corrosion degree of 2Ca alloys is always slighter than that of 4Ca alloys,suggesting that Al_(2)Ca phase is more beneficial to the enhancement of corrosion resistance of Mg−Al−Ca−Mn based alloys than Mg_(2)Ca phase.Finally,based on the examinations of corrosion surface and electrochemical testing results,different corrosion mechanisms caused by the distributions and morphology of Al_(2)Ca and Mg_(2)Ca phases are discussed.展开更多
基金Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in UniversityProject(2011BAE22B04)supportedby the National Key Technology R&D Program of ChinaProject(51271206)supported by the National Natural Science Foundation of China
文摘Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(9451806001002350)supported by Guangdong Science Fund+2 种基金Project(30815007)supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyProject(09JJ1007)supported by Hunan Science Fund for Distinguished Young ScholarsProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of China
文摘The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.
基金Project(2013CB632200)supported by the National Basic Research Program of ChinaProjects(51474043,51531002)supported by the National Natural Science Foundation of China+1 种基金Projects(CSTC2013JCYJC60001,KJZH14101)supported by Chongqing Municipal Government,ChinaProject(2015M581350)supported by the China Postdoctoral Science Foundation
文摘The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.
基金Projects (CSTC2013jcyjC60001) supported by the Chongqing Science and Technology Commission of ChinaProject (KJ120834) supported by the Chongqing Education Commission of ChinaProject (CQUT1205) supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts(Chongqing University of Technology),Ministry of Education,China
文摘The effects of the addition of 0.6%Ca(mass fraction) on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc magnesium alloys were investigated and compared by optical microscopy and scanning electron microscopy,differential scanning calorimetry analysis,and tensile and creep tests.The results indicate that the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can refine the grains of the two alloys.At the same time,the addition of 0.6%Ca to the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys can effectively improve the tensile properties of the two alloys.In addition,the addition of 0.6%Ca can also improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy but is not beneficial to the creep properties of the Mg-4Y-1.2Mn-0.9Sc alloy.The different effects of minor Ca on the creep properties of the Mg-3Ce-1.2Mn-0.9Sc and Mg-4Y-1.2Mn-0.9Sc alloys are possibly related to the difference in the solid solubilities of Ce and Y in Mg.
基金Project (50901034) supported by the National Natural Science Foundation of China (NSFC)Project (2010-1174) supported by Scientific Research Foundation (SRF) for the Returned Overseas Chinese Scholars (ROCS), State Education Ministry (SEM)Project (2012ZZ0005)supported by the Fundamental Research Funds for the Central Universities, South China University of Technology, China
文摘Mg-3%Al alloy was modified by combining Ca addition with carbon inoculation. The effects of Fe addition and addition sequence on the grain refinement were investigated. A higher grain refining efficiency could be obtained for the Mg-Al alloy modified by combining Ca addition with carbon inoculation. Fe addition and addition sequence had no obvious effect on the grain refinement. Ca addition could effectively avoid grain-coarsening resulting from Fe in the carbon-inoculated Mg-Al alloy. The Al-C-O particles, actually being Al4C3, should act as potent substrates for a-Mg grains in the sample treated by combining Ca addition with carbon inoculation. However, the duplex-phase particles of AI4C3 coated on Al-Fe or Al-C-Fe should be the potent substrates for a-Mg grains if Fe existed in the Mg-Al melt. Ca addition can contribute to the formation of the particles of Al4C3 coated on Al-Fe or Al-C-Fe, regardless of the Fe addition sequence. The poisoning effect of Fe was effectively inhibited in the carbon-inoculated of Mg-Al alloy due to Ca addition, namely, Ca has a poisoning-free effect.
基金Foundation item:Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(CSTC2013jcyj C60001)supported by the Chongqing Science and Technology Commission of ChinaProject(CQUT1205)supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts(Chongqing University of Technology),Ministry of Education,China
文摘The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.
基金Project(51271131)supported by the National Natural Science Foundation of China
文摘The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the pristine Mg-30%Ca(mass fraction) alloy were characterized with scanning electron microscopy(SEM) and X-ray diffraction(XRD).The Mg-30%Ca alloy samples were immersed in the SBF for 90 d,and the morphology,composition and cytotoxicity of the final corrosion product were examined.It is found that Mg-30%Ca alloy is composed of α-Mg and Mg2 Ca phases.During the corrosion process in the SBF,the Mg2 Ca phase acts as an anode and the α-Mg phase acts as a cathode.The final corrosion product of the Mg-30%Ca alloy in SBF includes a small amount of black precipitates and white suspended particles.The white suspended particles are Mg(OH)2 and the black particles are believed to have a core-shell structure.The cytotoxicity experiments indicate that these black precipitates do not induce toxicity to cells.
基金Project(51272055) supported by the National Natural Science Foundation of China
文摘A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail.
基金supported by General Research Funds (Projects#115108 and#114809) from the Research Grants Council of the Hong Kong SAR,China
文摘The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.
基金supported financially by Ministry of Higher Education of Malaysia under the Vote Number 78610
文摘The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.
基金supported by Liaoning Revitalization Talents Program, China (XLYC1807021)Joint Research Fund of Liaoning - Shenyang National Laboratory for Materials Science, China (2019JH3/30100014)+1 种基金Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang, China (RC200414)Scientific Research Fund of Liaoning Provincial Department of Education, China (LJGD2020008)
文摘A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51671017 and 51971020)the Beijing Municipal Natural Science Foundation,China(2202033)+2 种基金Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China,the Fundamental Research Funds for the Central Universities,China(FRF-IC-19-015)the Major State Research and Development Program of China(2016YFB0300801)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials,China(2018-Z04).
文摘The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing alloy wires mainly consist of Mg matrix and Ag17Mg54 phase,characterized by SEM,EDS,XRD and TEM.Tensile and knotting tests results demonstrate the superior mechanical properties of these alloy wires.Especially,Mg−1Zn−0.2Ca−4Ag alloy exhibits the highest mechanical properties,i.e.an ultimate tensile strength of 334 MPa and an elongation of 8.6%.Moreover,with increasing Ag content,the corrosion rates of these alloy wires remarkably increase due to the formation of more micro-galvanic coupling between Mg matrix and Ag17Mg54 phase,shown by mass loss and scanning Kelvin probe force microscopy(SKPFM)results.The present alloy can be completely degraded within 28 d,satisfying the property requirements of anastomotic nails.
文摘A Pb-0.08Ca-2Sn alloy was subjected to rolling at room temperature to different final thicknesses.Annealing treatments at temperature ranging from 80 to 120 °C led to recrystallization of the samples as shown by resistivity and micro-hardness measurements.The deformation texture determined through X-ray diffraction is qualitatively the Brass type.The measured Lankford anisotropy parameter R and its evolution are close to the determined one using a self consistent approach.The R value evolution with angle to rolling direction shows the presence of planar anisotropy and poor drawability.The recrystallization in annealing at 80-120 °C is achieved within time period up to 3×104 s.The recrystallization texture is a retained deformation texture with an emerging Cube component.
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
文摘The effects of addition of calcium up to 4 wt.% on the microstructure and creep properties of Mg-4 Sn alloys were investigated by the impression creep test. Impression creep tests were performed in temperature range between 445 and 475 K under normalized stresses σ/G(where σ is the stress;G is the shear modulus) between 0.0225 and 0.035. Optical microscopy and scanning electron microscopy were used to study the microstructure of samples. It is observed that the addition of Ca more than 2 wt.% suppresses less stable Mg Sn2 phase, and instead forms more thermally stable phases of Ca-Mg-Sn and Mg2 Ca at the grain boundaries which improve the creep resistance of Mg-4 Sn alloys. According to the stress exponents(6.04<n<6.89) and activation energies(101.37 k J/mol<Q<113.8 k J/mol) which were obtained from the impression creep tests, it is concluded that the pipe diffusion climb controlled dislocation creep is the dominant creep mechanism.
基金supported by the National Natural Science Foundation of China(No.51971040)the Fundamental Research Funds for the Central Universities,China(No.2020CDJQY-A007)+1 种基金China Postdoctoral Science Foundation(Nos.2017M620410,2018T110942)the Chongqing Postdoctoral Scientific Research Foundation,China(No.Xm2017010).
文摘Mg−Al layered double hydroxides(LDHs),produced on cast Mg−xCa(x=0.5,0.8,2.0,wt.%)alloys by an in-situ growth method,showed good corrosion resistance compared to the bare magnesium substrate.The influence mechanism of the second phase(Mg_(2)Ca)on LDHs production was investigated.Increasing Ca content increased the amount of Mg_(2)Ca,decreasing the grain size and the corrosion rate of the alloys.The increased amount of the second phase particles and the grain refinement promoted the growth of LDHs,and thus led to the decreasing of corrosion rate of the Mg−xCa alloys with LDHs.A higher Mg_(2)Ca amount resulted in forming fluffy LDHs.Due to the dual effects of the second phase(Mg_(2)Ca)for LDHs growth and microgalvanic corrosion,LDHs/Mg−0.8Ca showed the lowest corrosion rate.
基金the financial supports from the Fundamental Research Funds for the Central Universities,China(Nos.2019CDCGCL316,2020CDJDPT001)Chongqing Research Program of Basic Research and Frontier Technology,China(No.cstc2019jcjy-msxmX0539)。
文摘Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,electron back-scattered diffraction,and transmission electron microscopy.The mechanical properties were determined by the tensile test.The peak-aged sample shows fine recrystallized grains with an average grain size of 1.7μm.Area fraction of Al−Ca particles in the alloy increases significantly after peak aging.Meanwhile,botháañandác+añdislocations were observed to remain in the alloy after hot extrusion.Thus,the peak-aged sample exhibits simultaneously high strength and good ductility with the ultimate tensile stress,tensile yield stress,and tension fracture elongation of 320 MPa,314 MPa,and 19.0%,respectively.
基金financial support of the grant of the Russian Science Foundation(Project No.18-79-00345)(preparation of alloys,electron microscopy(SEM,EMPA,TEM),tensile tests)Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of MISiS(No.P02-2017-2-10)(thermodynamic calculations,dilatometry,DSC and XRD).
文摘The structure of the quaternary Al?(2?4)wt.%Ca?Ni?La system near the aluminum corner has been studied using computational analysis in the Thermo-Calc program and experimental studies(electron microscopy,microprobe analysis and X-ray diffraction).Based on the phase equilibria data obtained,the experimental projection of the liquidus surface and solid state phase-field distribution of the Al?Ca?Ni?La system have been proposed.Microstructure studies reveal that the alloys with the 2?4 wt.%Ca,2?4 wt.%Ni and 1?3 wt.%La ranges have an ultra-fine hypoeutectic structure with 30%volume fraction of eutectic intermetallics,which allows one to classify these alloys as natural Al-matrix composites.The ultra-fine eutectic structure produces significant strengthening,the magnitude of which can be well described using the modified Orowan looping mechanism model.Small additives of Zr and Sc(0.2 and 0.1 wt.%,respectively)lead to significant strengthening(by^25%)due to the formation of L12 type phase(Al3(Zr,Sc))nanoparticles during annealing of the alloy at 350?400℃.Due to the high volume fraction of eutectic intermetallics,the new alloys have low coefficients of thermal expansion and high thermal stability of the structure and mechanical properties.
基金financial supports from the National Natural Science Foundation of China (Nos.51901068,51979099)the Key Research and Development Project of Jiangsu Province,China (No.BE2021027)+1 种基金the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,China (No.ASMA202102)the Research Fund from Key Laboratory for Light-weight Materials of Jiangsu Province,China。
文摘To investigate the effect of separate Al_(2)Ca and Mg_(2)Ca phases on the corrosion properties of Mg−Al−Ca−Mn alloys,OM,SEM,immersion and electrochemical tests were conducted on the as-cast and ECAP Al_(2)Ca-containing(2Ca)and Mg_(2)Ca-containing(4Ca)alloys.At the beginning of corrosion,the two as-cast alloys are corroded slowly compared with ECAP alloys.With prolonging the corrosion time,the corrosion of ECAP alloys becomes slighter than that of as-cast alloys,which is mainly ascribed to the dispersion and refinement of the second phase in ECAP alloys.Moreover,the corrosion degree of 2Ca alloys is always slighter than that of 4Ca alloys,suggesting that Al_(2)Ca phase is more beneficial to the enhancement of corrosion resistance of Mg−Al−Ca−Mn based alloys than Mg_(2)Ca phase.Finally,based on the examinations of corrosion surface and electrochemical testing results,different corrosion mechanisms caused by the distributions and morphology of Al_(2)Ca and Mg_(2)Ca phases are discussed.