This paper presents a new process for synthesizing a kind of nitrogen- doped carbon nanotubes (N-CNTs) with primarily a ‘graphite-like’ structure at N substitutions from flames using n-propylamine and n-butylamine a...This paper presents a new process for synthesizing a kind of nitrogen- doped carbon nanotubes (N-CNTs) with primarily a ‘graphite-like’ structure at N substitutions from flames using n-propylamine and n-butylamine as fuels. When the N-CNTs are used as the supercapacitor electrode materials, they exhibit a much larger capacitance than the regular carbon nanotubes (CNTs). It is proposed that the high proportional ‘graphite-like’ N dopant in the as-grown N-CNTs improves their surface chemical activity and conductivity and then results in a desirable performance for electro-chemical capacitors.展开更多
文摘This paper presents a new process for synthesizing a kind of nitrogen- doped carbon nanotubes (N-CNTs) with primarily a ‘graphite-like’ structure at N substitutions from flames using n-propylamine and n-butylamine as fuels. When the N-CNTs are used as the supercapacitor electrode materials, they exhibit a much larger capacitance than the regular carbon nanotubes (CNTs). It is proposed that the high proportional ‘graphite-like’ N dopant in the as-grown N-CNTs improves their surface chemical activity and conductivity and then results in a desirable performance for electro-chemical capacitors.