Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) us...OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.展开更多
蛋白质的磷酸化与去磷酸化是细胞信号转导过程中最重要的调控方式,其循环过程就像调控分子的开关一样,参与众多生理活动。负责这一修饰调节的是蛋白激酶与蛋白磷酸酶。报道显示人类染色体编码多达500个蛋白激酶,这些蛋白激酶满足人类高...蛋白质的磷酸化与去磷酸化是细胞信号转导过程中最重要的调控方式,其循环过程就像调控分子的开关一样,参与众多生理活动。负责这一修饰调节的是蛋白激酶与蛋白磷酸酶。报道显示人类染色体编码多达500个蛋白激酶,这些蛋白激酶满足人类高度多样性与差异性调控蛋白磷酸化作用,而有趣的是人类编码的蛋白磷酸酶却仅仅约为150个,其中约有40个是丝氨酸/苏氨酸蛋白磷酸酶。越来越多的证据表明蛋白磷酸酶/蛋白激酶调控异常在心肌病中起关键作用。蛋白磷酸酶1(protein phosphatase 1,PP1)是一多功能的丝氨酸/苏氨酸蛋白磷酸酶,研究显示PP1在心肌肥厚和心衰的发生发展过程中起重要作用。而Ca2+/钙调素依赖性蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinaseⅡ,CaMKⅡ)是一种多功能的丝氨酸/苏氨酸蛋白激酶,它作为Ca2+信号转导的关键因子,调节细胞的多种生物学功能,其功能异常可引起肥厚心肌胞内钙稳态失衡进而引起心律失常等心肌病。该文就PP1与CaMKⅡ的功能和心肌病的关系作一综述。展开更多
目的探讨大鼠骨髓间充质干细胞(rat bone m arrow m esenchym al stem cells,MSCs)体外诱导分化为心肌样细胞内游离钙浓度([Ca2+]i)及钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的表达变化。方法取健康SD大鼠骨髓,用5-氮杂胞苷体外诱导培养。取...目的探讨大鼠骨髓间充质干细胞(rat bone m arrow m esenchym al stem cells,MSCs)体外诱导分化为心肌样细胞内游离钙浓度([Ca2+]i)及钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的表达变化。方法取健康SD大鼠骨髓,用5-氮杂胞苷体外诱导培养。取诱导培养2、3、4周的MSCs为Ⅰ、Ⅱ、Ⅲ组,另取急性分离的心肌细胞为对照组,分别用激光共聚焦技术和W estern b lot技术检测[Ca2+]i及CaMKⅡ表达水平。结果经荧光探针结合Ca2+后,用激光共聚焦技术检测发现,随诱导培养时间的延长,[Ca2+]i逐渐增加;诱导培养4周的MSCs内[Ca2+]i与对照组比较无显著差异[(100.81±17.64),(100.32±17.10),P>0.05]。各组细胞CaMKⅡ的变化趋势与[Ca2+]i定量分析结果相似,Ⅰ、Ⅱ、Ⅲ组及对照组分别为(322.45±19.43)、(434.43±16.77)、(680.91±20.61)、(682.69±21.03),Ⅲ组与对照组比较P>0.05。结论大鼠MSCs在体外诱导培养4周后已分化为心肌样细胞,其细胞内游离钙浓度和CaMKⅡ蛋白表达水平与正常心肌细胞相似。展开更多
Objective:Cardiac hypertrophy is an adaptive reaction of the heart against cardiac overloading,but continuous cardiac hypertrophy can lead to cardiac remodeling and heart failure.Cardiac hypertrophy is mostly consider...Objective:Cardiac hypertrophy is an adaptive reaction of the heart against cardiac overloading,but continuous cardiac hypertrophy can lead to cardiac remodeling and heart failure.Cardiac hypertrophy is mostly considered reversible,and recent studies have indicated that decorin not only prevents cardiac fibrosis associated with hypertension,but also achieves therapeutic effects by blocking fibrosis-related signaling pathways.However,the mechanism of action of decorin remains unknown and unconfirmed.Methods:We determined the degree of myocardial hypertrophy by measuring the ratios of the heart weight/body weight and left ventricular weight/body weight,histological analysis and immunohistochemistry.Western blotting was performed to detect the expression levels of CaMKⅡ,p-CaMKⅡ and MEF-2 in the heart.Results:Our results confirmed that decorin can regulate the CaMKⅡ/MEF-2 signaling pathway,with inhibition thereof being similar to that of decorin in reducing cardiac hypertrophy.Conclusion:Taken together,the results of the present study showed that decorin induced cardiac hypertrophy by regulating the CaMKⅡ/MEF-2 signaling pathway in vivo,revealing a new therapeutic approach for the prevention of cardiac hypertrophy.展开更多
Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the c...Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.展开更多
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
文摘OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.
文摘蛋白质的磷酸化与去磷酸化是细胞信号转导过程中最重要的调控方式,其循环过程就像调控分子的开关一样,参与众多生理活动。负责这一修饰调节的是蛋白激酶与蛋白磷酸酶。报道显示人类染色体编码多达500个蛋白激酶,这些蛋白激酶满足人类高度多样性与差异性调控蛋白磷酸化作用,而有趣的是人类编码的蛋白磷酸酶却仅仅约为150个,其中约有40个是丝氨酸/苏氨酸蛋白磷酸酶。越来越多的证据表明蛋白磷酸酶/蛋白激酶调控异常在心肌病中起关键作用。蛋白磷酸酶1(protein phosphatase 1,PP1)是一多功能的丝氨酸/苏氨酸蛋白磷酸酶,研究显示PP1在心肌肥厚和心衰的发生发展过程中起重要作用。而Ca2+/钙调素依赖性蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinaseⅡ,CaMKⅡ)是一种多功能的丝氨酸/苏氨酸蛋白激酶,它作为Ca2+信号转导的关键因子,调节细胞的多种生物学功能,其功能异常可引起肥厚心肌胞内钙稳态失衡进而引起心律失常等心肌病。该文就PP1与CaMKⅡ的功能和心肌病的关系作一综述。
文摘目的探讨大鼠骨髓间充质干细胞(rat bone m arrow m esenchym al stem cells,MSCs)体外诱导分化为心肌样细胞内游离钙浓度([Ca2+]i)及钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的表达变化。方法取健康SD大鼠骨髓,用5-氮杂胞苷体外诱导培养。取诱导培养2、3、4周的MSCs为Ⅰ、Ⅱ、Ⅲ组,另取急性分离的心肌细胞为对照组,分别用激光共聚焦技术和W estern b lot技术检测[Ca2+]i及CaMKⅡ表达水平。结果经荧光探针结合Ca2+后,用激光共聚焦技术检测发现,随诱导培养时间的延长,[Ca2+]i逐渐增加;诱导培养4周的MSCs内[Ca2+]i与对照组比较无显著差异[(100.81±17.64),(100.32±17.10),P>0.05]。各组细胞CaMKⅡ的变化趋势与[Ca2+]i定量分析结果相似,Ⅰ、Ⅱ、Ⅲ组及对照组分别为(322.45±19.43)、(434.43±16.77)、(680.91±20.61)、(682.69±21.03),Ⅲ组与对照组比较P>0.05。结论大鼠MSCs在体外诱导培养4周后已分化为心肌样细胞,其细胞内游离钙浓度和CaMKⅡ蛋白表达水平与正常心肌细胞相似。
文摘Objective:Cardiac hypertrophy is an adaptive reaction of the heart against cardiac overloading,but continuous cardiac hypertrophy can lead to cardiac remodeling and heart failure.Cardiac hypertrophy is mostly considered reversible,and recent studies have indicated that decorin not only prevents cardiac fibrosis associated with hypertension,but also achieves therapeutic effects by blocking fibrosis-related signaling pathways.However,the mechanism of action of decorin remains unknown and unconfirmed.Methods:We determined the degree of myocardial hypertrophy by measuring the ratios of the heart weight/body weight and left ventricular weight/body weight,histological analysis and immunohistochemistry.Western blotting was performed to detect the expression levels of CaMKⅡ,p-CaMKⅡ and MEF-2 in the heart.Results:Our results confirmed that decorin can regulate the CaMKⅡ/MEF-2 signaling pathway,with inhibition thereof being similar to that of decorin in reducing cardiac hypertrophy.Conclusion:Taken together,the results of the present study showed that decorin induced cardiac hypertrophy by regulating the CaMKⅡ/MEF-2 signaling pathway in vivo,revealing a new therapeutic approach for the prevention of cardiac hypertrophy.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2003AA603430) and the National Natural Science Foundation of China (No. 30371092)
文摘Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.