Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are...Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are an effective way to address these problems.Here,we report a new type of MSHBs that use layered sodium vanadate((Na,Mn)V_(8)O_(20)·5H_(2)O,Mn-NVO)cathodes coupled with an organic 3,4,9,10-perylenetetracarboxylic diimide(PTCDI)anode in Mg^(2+)/Na^(+)hybrid electrolytes.During electrochemical cycling,Mg^(2+)and Na^(+)co-participate in the cathode reactions,and the introduction of Na^(+)promotes the structural stability of the Mn-NVO cathode,as cleared by several ex-situ characterizations.Consequently,the Mn-NVO cathode presents great specific capacity(249.9 mA h g^(−1)at 300 mA g^(−1))and cycling(1500 cycles at 1500 mA g^(−1))in the Mg^(2+)/Na^(+)hybrid electrolytes.Besides,full battery displays long lifespan with 10,000 cycles at 1000 mA g^(−1).The rate performance and cycling stability of MSHBs have been improved by an economical and scalable method,and the mechanism for these improvements is discussed.展开更多
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
基金the financial support from the National Natural Science Foundation of China, China (22005207, 52261160384)the Guangdong Basic and Applied Basic Research Foundation, Guangdong Province, China (2019A1515011819)+2 种基金the Outstanding Youth Basic Research Project of Shenzhen, Shenzhen, China (RCYX20221008092934093)the Joint Funds of the National Natural Science Foundation of China, China (U22A20140)the Science and Technology Development Fund, Macao SAR (0090/2021/A2 and 0049/2021/AGJ)
文摘Magnesium ion batteries(MIBs)are a potential field for the energy storage of the future but are restricted by insufficient rate capability and rapid capacity degradation.Magnesium-sodium hybrid ion batteries(MSHBs)are an effective way to address these problems.Here,we report a new type of MSHBs that use layered sodium vanadate((Na,Mn)V_(8)O_(20)·5H_(2)O,Mn-NVO)cathodes coupled with an organic 3,4,9,10-perylenetetracarboxylic diimide(PTCDI)anode in Mg^(2+)/Na^(+)hybrid electrolytes.During electrochemical cycling,Mg^(2+)and Na^(+)co-participate in the cathode reactions,and the introduction of Na^(+)promotes the structural stability of the Mn-NVO cathode,as cleared by several ex-situ characterizations.Consequently,the Mn-NVO cathode presents great specific capacity(249.9 mA h g^(−1)at 300 mA g^(−1))and cycling(1500 cycles at 1500 mA g^(−1))in the Mg^(2+)/Na^(+)hybrid electrolytes.Besides,full battery displays long lifespan with 10,000 cycles at 1000 mA g^(−1).The rate performance and cycling stability of MSHBs have been improved by an economical and scalable method,and the mechanism for these improvements is discussed.