Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholestero...Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.展开更多
Background:Myocardial infarction(MI)is known worldwide for its important disabling features,including myocarditis and cardiomyocyte apoptosis.It is believed that microRNA(miRNA)has a role in the cellular processes of ...Background:Myocardial infarction(MI)is known worldwide for its important disabling features,including myocarditis and cardiomyocyte apoptosis.It is believed that microRNA(miRNA)has a role in the cellular processes of apoptosis and myocarditis,and miR-219a-5p has been found to suppress the inflammatory response.However,unknown is the precise mechanism by which miR-219a-5p contributes to MI.Methods:We measured the expression of miR-219a-5p and evaluated its effects on target proteins,inflammatory factors,and apoptosis in a mouse model of MI.Echocardiography was utilized to examine the MI clinical index,and triphenyl tetrazolium chloride staining was employed to analyze the infarcted region.Enzyme-linked immunosorbent assay and Western blotting measured serum and molecular markers in heart tissues.To quantify the association with miR-219a-5p and ATPase sarcoplasmic/endoplasmic reticulum Ca^(2+) transporting 2(ATP2A2),the luciferase activity assay and Pearson’s correlation analysis were employed.Results:MiR-219a-5p exhibited low expression in a mouse model of MI,and its amplification prevented both apoptotic and inflammatory reactions.Specifically,miR-219a-5p targeted ATP2A2.Conclusion:In a mouse model of MI,miR-219a-5p exerted a potent protective effect via direct targeting of ATP2A2.展开更多
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The tran...AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations (】 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco-2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION :Transepithelial transport of putrescine across Caco2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF.展开更多
Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic a...Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
基金supported by the National Key R&D Program of China (2022YFE0196200)the National Natural Science Foundation of China–Deutsche Forschungsgemeinschaft of Germany (31761133021)+3 种基金the National Natural Science Foundation of China (31970469 and 31701794)the earmarked fund for Modern Agro-industry Technology Research System, China (2023CYJSTX01-20)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (2017104)the Fund for Shanxi “1331 Project”, China
文摘Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.
基金supported by the National Nature Science Foundation of the People’s Republic of China(No.81400225 for Zulong Sheng and No.82000382 for Yanru He)the Jiangsu Provincial Medical Youth Talent(No.QNRC2016815).
文摘Background:Myocardial infarction(MI)is known worldwide for its important disabling features,including myocarditis and cardiomyocyte apoptosis.It is believed that microRNA(miRNA)has a role in the cellular processes of apoptosis and myocarditis,and miR-219a-5p has been found to suppress the inflammatory response.However,unknown is the precise mechanism by which miR-219a-5p contributes to MI.Methods:We measured the expression of miR-219a-5p and evaluated its effects on target proteins,inflammatory factors,and apoptosis in a mouse model of MI.Echocardiography was utilized to examine the MI clinical index,and triphenyl tetrazolium chloride staining was employed to analyze the infarcted region.Enzyme-linked immunosorbent assay and Western blotting measured serum and molecular markers in heart tissues.To quantify the association with miR-219a-5p and ATPase sarcoplasmic/endoplasmic reticulum Ca^(2+) transporting 2(ATP2A2),the luciferase activity assay and Pearson’s correlation analysis were employed.Results:MiR-219a-5p exhibited low expression in a mouse model of MI,and its amplification prevented both apoptotic and inflammatory reactions.Specifically,miR-219a-5p targeted ATP2A2.Conclusion:In a mouse model of MI,miR-219a-5p exerted a potent protective effect via direct targeting of ATP2A2.
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
文摘AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations (】 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco-2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION :Transepithelial transport of putrescine across Caco2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF.
文摘Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.
文摘目的 检测急性脑梗死(acute cerebral infarct, ACI)患者血清纤维蛋白原样蛋白2(FGL2)和转运蛋白(TSPO)水平,探讨二者与患者神经功能缺损程度及预后的关系。方法 选取2020年8月~2021年8月河北省邯郸市邯钢医院收治的110例急性脑梗死患者为研究对象,另取同期体检健康者90例为对照组。酶联免疫吸附法检测血清FGL2和TSPO水平;美国国立卫生研究院卒中量表(NIHSS)评估患者神经功能缺损程度,采用Spearman等级相关分析急性脑梗死患者神经功能缺损程度与血清FGL2和TSPO水平的相关性;根据急性脑梗死患者预后情况将其分为预后良好组(n=76)和预后不良组(n=34),受试者工作特征(ROC)曲线分析血清FGL2和TSPO对急性脑梗死患者预后的预测效能。结果 与对照组比较,急性脑梗死患者血清FGL2水平(231.52±41.29 ng/ml vs 125.26±24.16 ng/ml)和TSPO水平(6.28±1.05 ng/L vs 3.54±0.74 ng/L)升高,差异均有统计学意义(t=21.573,20.872,均P <0.05)。与轻度组比较,中度组血清FGL2(236.63±42.49ng/ml vs196.62±36.61ng/ml),TSPO(6.36±1.04ng/L vs 4.84±0.87ng/L)水平升高,与中度组比较,重度组血清FGL2(275.20±50.25ng/ml vs 236.63±42.49ng/ml),TSPO(8.26±1.32ng/L vs 6.36±1.04ng/L)水平升高,差异均有统计学意义(t=4.549,7.153;3.432,6.640,均P <0.05)。Spearman相关性分析显示血清FGL2,TSPO水平与神经功能缺损程度呈正相关(r=0.514,0.495,均P <0.05)。与预后良好组比较,预后不良组血清FGL2水平(287.75±43.81 ng/ml vs 206.36±40.16 ng/ml)和TSPO水平(7.83±1.80 ng/L vs 5.58±0.72 ng/L)升高,差异均有统计学意义(t=9.549,9.386,均P<0.05)。血清FGL2,TSPO预测急性脑梗死患者预后不良的曲线下面积(AUC)分别为0.926,0.825,联合预测的AUC为0.975,优于各指标单独预测(Z=2.621,3.100,均P <0.05)。结论 急性脑梗死患者血清FGL2和TSPO水平增高,与神经功能缺损程度呈正相关,对患者的预后状况具有较高的预测效能,为临床的合理干预和改善患者预后提供依据。
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.