[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze th...[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mu- tants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdfl was insensitive to ABA, mannitol and NaCI, but cdsl performed contrary to cdil. [ Conclusion] There are some different physiological characteristics between wild type and mutants.展开更多
Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of p...Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of polyunsaturated FAs in plant cells by converting oleic acid (18:1) to linoleic acid (18:2). To better understand the relationship between polyunsaturated FAs metabolism and stress adaptation, the expression of FAD2 gene and changes in the FA compositions under various abiotic stresses and phytohormone treatments in Arabidopsis thaliana was investigated in this study. A 1 423-bp promoter of the FAD2 gene was cloned and characterized from Arabidopsis. Several putative hormone- and stress- inducible cis-elements were identified in the cloned promoter, which include salt- and pathogen-inducible GT-1 motifs, low-temperature-responsive MYC element, dehydration-responsive MYB element, and GA signaling related WRKY71OS element. To investigate the fine regulation of FAD2 gene, a recombinant FAD2 promoter-GUS construct was introduced into Arabidopsis plants. Histochemical study showed that the promoter was ubiquitously active and responsive not only to exogenous phytohormones including ABA, 24-eBL, and SA but also to darkness, temperature, salt, and sucrose stresses in Arabidopsis seedlings. Consistent with the expression change, treatments with exogenous 24-eBL, ABA, SA, and NaCl resulted in reduction in polyunsaturated FAs in Arabidopsis seedlings. These findings suggest that the FAD2 gene with a wide variety of putative response elements in its promoter is responsive to multiple phytohormones and abiotic stresses and therefore may play an important role in stress responses of Arabidopsis during plant growth and seed development.展开更多
The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6%...The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.展开更多
[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc fin...[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc finger endonuclease(ZFN)"and"transcription activator effector nuclease(TALEN)".Glucotransferase genes UGT84A2 and UGT84A4,can simultaneously convert hydroxycinnamate into 1-O-β-glucose esters as isozymes.The CRISPR/Cas9 technology was used to construct double mutants of Arabidopsis thaliana ugt84a2/ugt84a4.[Methods]A CRISPR/Cas9 double mutant expression vector was constructed using UGT84A2 and UGT84A4 as the target genes.The Agrobacterium-mediated dip dyeing method was used to transform wild-type A.thaliana,and the CRISPR/Cas9system was used to target and knock out A.thaliana UGT84A2 and UGT84A4 genes.[Results]The descendants of A.thaliana with the UGT84A2/UGT84A4 gene were sequenced and analyzed.Thirteen positively transformed plants obtained were analyzed according to the sequencing results,and the ugt84a2/ugt84a4 double mutants were screened.[Conclusions]This study provides a reference for the functional study of UGT84A2 and UGT84A4 isoenzyme genes in other species,as well as strong theoretical and method support for accelerating the development and utilization of UGT84A2/UGT84A4 functional gene resources.展开更多
The asymmetric leaves2 ( as2) is a classical Arabidopsis thaliana (L.) Heynh. mutant that shows leaf lobes and leaflet-like structures from the petioles of leaves. Genetic and molecular analyses have demonstrated that...The asymmetric leaves2 ( as2) is a classical Arabidopsis thaliana (L.) Heynh. mutant that shows leaf lobes and leaflet-like structures from the petioles of leaves. Genetic and molecular analyses have demonstrated that the AS2 function is required for repression of meristem-related homeobox genes in leaves. In this study, we describe phenotypic characterizations of new as2 alleles that are in the Landsberg erecta (Ler) genetic background. In addition to the as2 phenotypes reported previously, the new as2 mutants have some leaves with petiole growth underneath the leaf blade, showing a lotus-leaf structure. More severe rosettes leaves of the as2 mutants form a filament-like structure, reflecting a loss of the adaxial-abaxial polarity in leaves. Among as2 mutants analyzed in different genetic backgrounds, only those that are in the Ler genetic background resulted in a high frequency of the lotus-leaf structure. We have isolated the AS2 gene by map-based gene cloning. The predicted AS2 protein contains a leucine-zipper motif, and its N-terminus shares high levels of sequence similarity to those of a group of predicted proteins with no known biological functions. AS2 transcripts were detected in leaves, flowers and fruits, but absent in stems, consistent with the mutant phenotypes.展开更多
The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes ...The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes.展开更多
Magnesium (Mg^2+) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukar...Magnesium (Mg^2+) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg^2+ transporters. Some family members (AtMGT1 and AtMGT10) function as high-affinity Mg^2+ transporter and could complement bacterial mutant or yeast mutant lacking Mg^2+ transport capability. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg^2+ transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg^2+ uptake in the sub-millimolar range of Mg^2+. The AtMGT9 gene was expressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mutant +/mgt9, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, At- MGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgt9. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg^2+ transporter that plays a crucial role in male gametophyte development and male fertility.展开更多
The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level r...The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants.展开更多
Plant growth and development are significantly hampered in saline environments,limiting agricultural productivity.Thus,it is crucial to unravel the mechanism underlying plant responses to salt stress.β-1,4-Galactan(g...Plant growth and development are significantly hampered in saline environments,limiting agricultural productivity.Thus,it is crucial to unravel the mechanism underlying plant responses to salt stress.β-1,4-Galactan(galactan),which forms the side chains of pectic rhamnogalacturonan I,enhances plant sensitivity to high-salt stress.Galactan is synthesized by GALACTAN SYNTHASE1(GALS1).We previously showed that Na Cl relieves the direct suppression of GALS1 transcription by the transcription factors BPC1 and BPC2 to induce the excess accumulation of galactan in Arabidopsis(Arabidopsis thaliana).However,how plants adapt to this unfavorable environment remains unclear.Here,we determined that the transcription factors CBF1,CBF2,and CBF3 directly interact with the GALS1 promoter and repress its expression,leading to reduced galactan accumulation and enhanced salt tolerance.Salt stress enhances the binding of CBF1/CBF2/CBF3 to the GALS1 promoter by inducing CBF1/CBF2/CBF3 transcription and accumulation.Genetic analysis suggested that CBF1/CBF2/CBF3 function upstream of GALS1 to modulate salt-induced galactan biosynthesis and the salt response.CBF1/CBF2/CBF3 and BPC1/BPC2 function in parallel to regulate GALS1 expression,thereby modulating the salt response.Our results reveal a mechanism in which salt-activated CBF1/CBF2/CBF3 inhibit BPC1/BPC2-regulated GALS1 expression to alleviate galactan-induced salt hypersensitivity,providing an activation/deactivation fine-tune mechanism for dynamic regulation of GALS1 expression under salt stress in Arabidopsis.展开更多
Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones.Polyamines play critical roles in a range of developmental processes.However,the molecular mechanisms of polyamine ...Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones.Polyamines play critical roles in a range of developmental processes.However,the molecular mechanisms of polyamine signaling pathways remain poorly understood.Here,we measured the contents of main types of polyamines,and found that endogenous level of thermospermine(T-Spm)in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine(Put),spermidine(Spd),and spermine(Spm).We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5 nodule structure(san)through suppressor screening.An in-depth study of two san suppressors revealed that NAP57 and NOP56,core components of box H/ACA and C/D snoRNPs,were essential for T-Spm-mediated nodule-like structure formation and plant height.Furthermore,analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2′-O-methylation were compromised in san1 and san2 respectively.Taken together,these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development,which was previously undiscovered in all organisms.展开更多
文摘[Objective] The 15urpose was to seek for the different phenotypes between wild type and Arabidopsis Mutants in response to CO2. [Method] The epidermis bioassays and seed germination test were carried out to analyze the physiological characteristics of two Arabidopsis mu- tants and their wild type. [Result] There existed distinct differences in stomata apertures, water loss and leaf temperature compared with wild type except for stomata density. In addition, seed germination test on the medium indicated that cdfl was insensitive to ABA, mannitol and NaCI, but cdsl performed contrary to cdil. [ Conclusion] There are some different physiological characteristics between wild type and mutants.
基金supported by grants from the National HighTech R&D Program of China (2008AA02Z103)the National Natural Science Foundation of China (30671332)the Natural Science Foundation of Zhejiang Province,China (Z304430)
文摘Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of polyunsaturated FAs in plant cells by converting oleic acid (18:1) to linoleic acid (18:2). To better understand the relationship between polyunsaturated FAs metabolism and stress adaptation, the expression of FAD2 gene and changes in the FA compositions under various abiotic stresses and phytohormone treatments in Arabidopsis thaliana was investigated in this study. A 1 423-bp promoter of the FAD2 gene was cloned and characterized from Arabidopsis. Several putative hormone- and stress- inducible cis-elements were identified in the cloned promoter, which include salt- and pathogen-inducible GT-1 motifs, low-temperature-responsive MYC element, dehydration-responsive MYB element, and GA signaling related WRKY71OS element. To investigate the fine regulation of FAD2 gene, a recombinant FAD2 promoter-GUS construct was introduced into Arabidopsis plants. Histochemical study showed that the promoter was ubiquitously active and responsive not only to exogenous phytohormones including ABA, 24-eBL, and SA but also to darkness, temperature, salt, and sucrose stresses in Arabidopsis seedlings. Consistent with the expression change, treatments with exogenous 24-eBL, ABA, SA, and NaCl resulted in reduction in polyunsaturated FAs in Arabidopsis seedlings. These findings suggest that the FAD2 gene with a wide variety of putative response elements in its promoter is responsive to multiple phytohormones and abiotic stresses and therefore may play an important role in stress responses of Arabidopsis during plant growth and seed development.
文摘The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.
基金Supported by Natural Science Foundation of Shandong Province(ZR2017PC007)Project of Shandong(Linyi)Institute of Modern Agriculture of Zhejiang University for Serving Local Economic Development(ZDNY-2020-FWLY02007)Doctoral Program of China West Normal University(18Q051)。
文摘[Objectives]The CRISPR/Cas9(Clustered regulatory interspaced short palindromic repeat/Cas9)gene editing technology is the third generation of"genome fixed-point editing technology"following the"zinc finger endonuclease(ZFN)"and"transcription activator effector nuclease(TALEN)".Glucotransferase genes UGT84A2 and UGT84A4,can simultaneously convert hydroxycinnamate into 1-O-β-glucose esters as isozymes.The CRISPR/Cas9 technology was used to construct double mutants of Arabidopsis thaliana ugt84a2/ugt84a4.[Methods]A CRISPR/Cas9 double mutant expression vector was constructed using UGT84A2 and UGT84A4 as the target genes.The Agrobacterium-mediated dip dyeing method was used to transform wild-type A.thaliana,and the CRISPR/Cas9system was used to target and knock out A.thaliana UGT84A2 and UGT84A4 genes.[Results]The descendants of A.thaliana with the UGT84A2/UGT84A4 gene were sequenced and analyzed.Thirteen positively transformed plants obtained were analyzed according to the sequencing results,and the ugt84a2/ugt84a4 double mutants were screened.[Conclusions]This study provides a reference for the functional study of UGT84A2 and UGT84A4 isoenzyme genes in other species,as well as strong theoretical and method support for accelerating the development and utilization of UGT84A2/UGT84A4 functional gene resources.
文摘The asymmetric leaves2 ( as2) is a classical Arabidopsis thaliana (L.) Heynh. mutant that shows leaf lobes and leaflet-like structures from the petioles of leaves. Genetic and molecular analyses have demonstrated that the AS2 function is required for repression of meristem-related homeobox genes in leaves. In this study, we describe phenotypic characterizations of new as2 alleles that are in the Landsberg erecta (Ler) genetic background. In addition to the as2 phenotypes reported previously, the new as2 mutants have some leaves with petiole growth underneath the leaf blade, showing a lotus-leaf structure. More severe rosettes leaves of the as2 mutants form a filament-like structure, reflecting a loss of the adaxial-abaxial polarity in leaves. Among as2 mutants analyzed in different genetic backgrounds, only those that are in the Ler genetic background resulted in a high frequency of the lotus-leaf structure. We have isolated the AS2 gene by map-based gene cloning. The predicted AS2 protein contains a leucine-zipper motif, and its N-terminus shares high levels of sequence similarity to those of a group of predicted proteins with no known biological functions. AS2 transcripts were detected in leaves, flowers and fruits, but absent in stems, consistent with the mutant phenotypes.
基金supported by the National Natural Science Foundation of China (30700428, 30911130166)Beijing Natural Science Foundation, China (5072009)the New Star Plan of Science and Technology Item of Beijing, China (2006B26)
文摘The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes.
基金Acknowledgments We are grateful to Dr Michael E Maguire (Case Western Reserve University, USA) for providing the Salmonella mutant strain MM281 and advice on tracer uptake. This work was supported by grants from National Natural Science Foundation of China (30370794), Hunan Young Scientist Program (03JJY1003), and Hunan Provincial NSFC (08JJ3088).
文摘Magnesium (Mg^2+) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg^2+ transporters. Some family members (AtMGT1 and AtMGT10) function as high-affinity Mg^2+ transporter and could complement bacterial mutant or yeast mutant lacking Mg^2+ transport capability. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg^2+ transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg^2+ uptake in the sub-millimolar range of Mg^2+. The AtMGT9 gene was expressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mutant +/mgt9, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, At- MGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgt9. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg^2+ transporter that plays a crucial role in male gametophyte development and male fertility.
基金This work was supported by the National Natural Science Foundation of China (No. 30270796) Natural Science Foundation of Hebei Province, China (No. C2005000171).
文摘The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants.
基金supported by grants from the National Natural Science Foundation of China(32001445)。
文摘Plant growth and development are significantly hampered in saline environments,limiting agricultural productivity.Thus,it is crucial to unravel the mechanism underlying plant responses to salt stress.β-1,4-Galactan(galactan),which forms the side chains of pectic rhamnogalacturonan I,enhances plant sensitivity to high-salt stress.Galactan is synthesized by GALACTAN SYNTHASE1(GALS1).We previously showed that Na Cl relieves the direct suppression of GALS1 transcription by the transcription factors BPC1 and BPC2 to induce the excess accumulation of galactan in Arabidopsis(Arabidopsis thaliana).However,how plants adapt to this unfavorable environment remains unclear.Here,we determined that the transcription factors CBF1,CBF2,and CBF3 directly interact with the GALS1 promoter and repress its expression,leading to reduced galactan accumulation and enhanced salt tolerance.Salt stress enhances the binding of CBF1/CBF2/CBF3 to the GALS1 promoter by inducing CBF1/CBF2/CBF3 transcription and accumulation.Genetic analysis suggested that CBF1/CBF2/CBF3 function upstream of GALS1 to modulate salt-induced galactan biosynthesis and the salt response.CBF1/CBF2/CBF3 and BPC1/BPC2 function in parallel to regulate GALS1 expression,thereby modulating the salt response.Our results reveal a mechanism in which salt-activated CBF1/CBF2/CBF3 inhibit BPC1/BPC2-regulated GALS1 expression to alleviate galactan-induced salt hypersensitivity,providing an activation/deactivation fine-tune mechanism for dynamic regulation of GALS1 expression under salt stress in Arabidopsis.
基金supported by the National Natural Science Foundation of China(31788103,32122012,32100221,91940302,31430024)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24040202)+1 种基金the Chinese Academy of Sciences Youth Innovation Promotion Association(2019099)the CAS Key Technology Talent Program(2017)。
文摘Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones.Polyamines play critical roles in a range of developmental processes.However,the molecular mechanisms of polyamine signaling pathways remain poorly understood.Here,we measured the contents of main types of polyamines,and found that endogenous level of thermospermine(T-Spm)in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine(Put),spermidine(Spd),and spermine(Spm).We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5 nodule structure(san)through suppressor screening.An in-depth study of two san suppressors revealed that NAP57 and NOP56,core components of box H/ACA and C/D snoRNPs,were essential for T-Spm-mediated nodule-like structure formation and plant height.Furthermore,analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2′-O-methylation were compromised in san1 and san2 respectively.Taken together,these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development,which was previously undiscovered in all organisms.