Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the c...Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.展开更多
In rice, the Ca^(2+)/calmodulin-dependent protein kinase OsDMI3 is an important positive regulator of abscisic acid (ABA) signaling. In ABA signaling, H_(2)O_(2) is required for ABA-induced activation of OsDMI3, which...In rice, the Ca^(2+)/calmodulin-dependent protein kinase OsDMI3 is an important positive regulator of abscisic acid (ABA) signaling. In ABA signaling, H_(2)O_(2) is required for ABA-induced activation of OsDMI3, which in turn increase H_(2)O_(2) production. However, how OsDMI3 regulates H_(2)O_(2) production in ABA signaling remains unknown. Here we show that OsRbohB is the main NADPH oxidase involved in ABA-induced H_(2)O_(2) production and ABA-mediated physiological responses. OsDMI3 directly interacts with and phosphorylates OsRbohB at Ser-191, which is OsDMI3-mediated site-specific phosphorylation in ABA signaling. Further analyses revealed that OsDMI3-mediated OsRbohB Ser-191 phosphorylation positively regulates the activity of NADPH oxidase and the production of H_(2)O_(2) in ABA signaling, thereby enhancing the sensitivity of seed germination and root growth to ABA and plant tolerance to water stress and oxidative stress. Moreover, we discovered that the OsDMI3-mediated OsRbohB phosphorylation and H_(2)O_(2) production is dependent on the sucrose non-fermenting 1-related protein kinases SAPK8/9/10, which phosphorylate OsRbohB at Ser-140 in ABA signaling. Taken together, these results not only reveal an important regulatory mechanism that directly activates Rboh for ABA-induced H_(2)O_(2) production but also uncover the importance of this regulatory mechanism in ABA signaling.展开更多
Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes t...Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes the exocytosis and subsequent endocytic retrieval of glutamate-containing synaptic vesicles,and regulates the postsynaptic response to the presynaptic release of glutamate.Indeed,t PA has a bidirectional effect on the composition of the postsynaptic density(PSD) that does not require plasmin generation or the presynaptic release of glutamate,but varies according to the baseline level of neuronal activity.Hence,in inactive neurons t PA induces phosphorylation and accumulation in the PSD of the Ca^(2+)/calmodulin-dependent protein kinase IIα(pCa MKIIα),followed by pCa MKIIα-induced phosphorylation and synaptic recruitment of Glu R1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA) receptors.In contrast,in active neurons with increased levels of pCa MKIIα in the PSD t PA induces pCa MKIIα and p Glu R1 dephosphorylation and their subsequent removal from the PSD.These effects require active synaptic N-methyl-D-aspartate(NMDA) receptors and cyclin-dependent kinase 5(Cdk5)-induced phosphorylation of the protein phosphatase 1(PP1) at T320.These data indicate that t PA is a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate via bidirectional regulation of the pCa MKIIα/PP1 switch in the PSD.展开更多
Intramuscular fat (IMF) content in chickens significantly contributes to meat quality. The main objective of this study was to assess the expression of calcineudn (CAN) and Ca^2+/calmodutin-dependent protein kina...Intramuscular fat (IMF) content in chickens significantly contributes to meat quality. The main objective of this study was to assess the expression of calcineudn (CAN) and Ca^2+/calmodutin-dependent protein kinase (CAME) in lipogene- sis in chicken muscle. The chickens were slaughtered and sampled at the ages of 4, 8, and 16 weeks, respectively. IMF content and the expression of CaN subunits and CaMK isoforms were measured in thigh muscle tissue. The results showed that the IMF contents were higher in chickens at the age of 16 weeks compared with those in chickens at the ages of 4 and 8 weeks (P〈0.05). The expression levels of fatty acid synthase (FAS) and fatty acid translocase CD36 (FAT/CD36) mRNA in 16-week-old chickens were all significantly up-regulated compared with those in 4-week-old chickens (P〈0.05). The mRNA levels of CaNB and CaMK IV in 16-week-old chickens were significantly lower than those in 4-week-old chickens (P〈0.05). But the CaMK II mRNA levels in 16-week-old chickens were significantly higher than those in 4-week-old chickens (P〈0.05). To investigate the roles of CaMK and CaN in adipogenesis, SV cells were incubated in standard adipogenesis medium for 24 h and treated with specific inhibitor of CaMK and CaN. The ex- pressions of CCAAT/enhancer binding protein β(C/EBPJ3), sterol regulatory element- binding protein 1 (SREBP1) and peroxisome proliferation-activated receptor ), (PPARy) were dramatically enhanced by CsA and CaN inhibitor (P〈0.05). KN93, a CaMK Ⅱ inhibitor, dramatically repressed the expression of those lipogenic genes (P〈0.05). All the results above indicated that CaN and CaMK had different effects on adipogenesis in the muscle of chickens.展开更多
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2003AA603430) and the National Natural Science Foundation of China (No. 30371092)
文摘Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.
基金supported by the National Natural Science Foundation of China(31971824 and 32170316).
文摘In rice, the Ca^(2+)/calmodulin-dependent protein kinase OsDMI3 is an important positive regulator of abscisic acid (ABA) signaling. In ABA signaling, H_(2)O_(2) is required for ABA-induced activation of OsDMI3, which in turn increase H_(2)O_(2) production. However, how OsDMI3 regulates H_(2)O_(2) production in ABA signaling remains unknown. Here we show that OsRbohB is the main NADPH oxidase involved in ABA-induced H_(2)O_(2) production and ABA-mediated physiological responses. OsDMI3 directly interacts with and phosphorylates OsRbohB at Ser-191, which is OsDMI3-mediated site-specific phosphorylation in ABA signaling. Further analyses revealed that OsDMI3-mediated OsRbohB Ser-191 phosphorylation positively regulates the activity of NADPH oxidase and the production of H_(2)O_(2) in ABA signaling, thereby enhancing the sensitivity of seed germination and root growth to ABA and plant tolerance to water stress and oxidative stress. Moreover, we discovered that the OsDMI3-mediated OsRbohB phosphorylation and H_(2)O_(2) production is dependent on the sucrose non-fermenting 1-related protein kinases SAPK8/9/10, which phosphorylate OsRbohB at Ser-140 in ABA signaling. Taken together, these results not only reveal an important regulatory mechanism that directly activates Rboh for ABA-induced H_(2)O_(2) production but also uncover the importance of this regulatory mechanism in ABA signaling.
基金supported in part by National Institutes of Health Grants NS-079331(to MY)and NS-091201(to MY)
文摘Membrane depolarization induces the release of the serine proteinase tissue-type plasminogen activator(t PA) from the presynaptic terminal of cerebral cortical neurons.Once in the synaptic cleft this t PA promotes the exocytosis and subsequent endocytic retrieval of glutamate-containing synaptic vesicles,and regulates the postsynaptic response to the presynaptic release of glutamate.Indeed,t PA has a bidirectional effect on the composition of the postsynaptic density(PSD) that does not require plasmin generation or the presynaptic release of glutamate,but varies according to the baseline level of neuronal activity.Hence,in inactive neurons t PA induces phosphorylation and accumulation in the PSD of the Ca^(2+)/calmodulin-dependent protein kinase IIα(pCa MKIIα),followed by pCa MKIIα-induced phosphorylation and synaptic recruitment of Glu R1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA) receptors.In contrast,in active neurons with increased levels of pCa MKIIα in the PSD t PA induces pCa MKIIα and p Glu R1 dephosphorylation and their subsequent removal from the PSD.These effects require active synaptic N-methyl-D-aspartate(NMDA) receptors and cyclin-dependent kinase 5(Cdk5)-induced phosphorylation of the protein phosphatase 1(PP1) at T320.These data indicate that t PA is a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate via bidirectional regulation of the pCa MKIIα/PP1 switch in the PSD.
基金Supported by Natural Science Foundation of Hubei Province of China(2011CDB012)Project of State Key Laboratory of Animal Nutrition(2004DA125184F1012)
文摘Intramuscular fat (IMF) content in chickens significantly contributes to meat quality. The main objective of this study was to assess the expression of calcineudn (CAN) and Ca^2+/calmodutin-dependent protein kinase (CAME) in lipogene- sis in chicken muscle. The chickens were slaughtered and sampled at the ages of 4, 8, and 16 weeks, respectively. IMF content and the expression of CaN subunits and CaMK isoforms were measured in thigh muscle tissue. The results showed that the IMF contents were higher in chickens at the age of 16 weeks compared with those in chickens at the ages of 4 and 8 weeks (P〈0.05). The expression levels of fatty acid synthase (FAS) and fatty acid translocase CD36 (FAT/CD36) mRNA in 16-week-old chickens were all significantly up-regulated compared with those in 4-week-old chickens (P〈0.05). The mRNA levels of CaNB and CaMK IV in 16-week-old chickens were significantly lower than those in 4-week-old chickens (P〈0.05). But the CaMK II mRNA levels in 16-week-old chickens were significantly higher than those in 4-week-old chickens (P〈0.05). To investigate the roles of CaMK and CaN in adipogenesis, SV cells were incubated in standard adipogenesis medium for 24 h and treated with specific inhibitor of CaMK and CaN. The ex- pressions of CCAAT/enhancer binding protein β(C/EBPJ3), sterol regulatory element- binding protein 1 (SREBP1) and peroxisome proliferation-activated receptor ), (PPARy) were dramatically enhanced by CsA and CaN inhibitor (P〈0.05). KN93, a CaMK Ⅱ inhibitor, dramatically repressed the expression of those lipogenic genes (P〈0.05). All the results above indicated that CaN and CaMK had different effects on adipogenesis in the muscle of chickens.