A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to...A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to the total impacts, and to determine how the impacts compare to the primary alternative product, galvanized steel posts. Guard rail posts are the supporting structures for highway guard rails. Transportation engineers, as well as public and regulatory interests, have increasing need to understand the environmental implications of guard rail post selection, in addition to factors such as costs and service performance. This study uses a life cycle inventory (LCI) to catalogue the input and output data from guard rail post manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to assess anthropogenic and net greenhouse gas (GHG), acidification, smog, ecotoxicity, and eutrophication potentially resulting from life cycle air emissions. Other indicators of interest also are tracked, such as fossil fuel and water use. Comparisons of guard rail post products are made at a functional unit of one post per year of service. This life cycle assessment (LCA) finds that the manufacture, use, and disposition of CCA-treated wood guard rails offers lower fossil fuel use and lower anthropogenic and net GHG emissions, acidification, smog potential, and ecotoxicity environmental impacts than impact indicator values for galvanized steel posts. Water use and eutrophication impact indicator values for CCA-treated guard rail posts are greater than impact indicator values for galvanized steel guard rail posts.展开更多
A softening zone with recrystallized grain around the prepared crack tip in the shock waves treated C-Mn steel weld metal was observed. It is suggested that a dynamic recovery occurred around the prepared crack tip ev...A softening zone with recrystallized grain around the prepared crack tip in the shock waves treated C-Mn steel weld metal was observed. It is suggested that a dynamic recovery occurred around the prepared crack tip even at a low explosion pressure (5 GPa) because of the stress and strain concentration at the crack tip when shock waves pass through. This result supports the previous work on the improved mechanical properties of a shock treated welded joint with residual crack from the viewpoint of microstructure.展开更多
The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper ba...The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite, pearlite and lower bainite depending on the heat treating conditions. Heat treating increases the hardness of sintered steels but high tempering temperature, i.e. 700℃, causes the hardness to be even lower than that of the as-sintered ones. The impact energy of sintered steels increases with increasing tempering temperature and arrives the highest at 700℃, while the steels tempered at 200℃ have the highest transverse rupture strength. Austempering results in fair good overall properties, such as hardness, impact energy, and transverse rupture strength. When the sintered steels were austempered, oil-quenched or tempered below 400? after quenched, the wear coefficient becomes considerably lower. Fair high hardness, such as HV30 】 380, and structures of martensite, tempered martensite or lower bainite are beneficial to lowering the wear coefficient. Under the wear test conditions given, delamination and oxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4 in the wear debris is beneficial to lowering wear coefficient.展开更多
Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were ...Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.展开更多
When liquid steel slag produced from steelmaking process was treated into the post-cold slag by conventional methods,the great deal of slag heat was dissipated into the environment,causing a lot of energy waste and en...When liquid steel slag produced from steelmaking process was treated into the post-cold slag by conventional methods,the great deal of slag heat was dissipated into the environment,causing a lot of energy waste and environmental pollution.In this study,a novel approach of direct utilization of hot steel slag as a raw material and slag heat for the production of glass-ceramics was proposed and experimentally tested.In order to simulate liquid slag from steelmaking electric furnace,40%water-quenched slag was remelted at 1 450℃and then mixed with 60%melting additives(silica powder,alumina powder and sodium oxide, etc.)and subsequently melted together at 1 500℃for 1 h into modified liquid slag which was cast,heat-treated, annealed and transformed into glass-ceramics.The heat-treated glass samples were investigated using differential thermal analysis(DTA),X-ray diffraction(XRD),and scanning electron microscopy(SEM). The results show that dominant crystalline phase is diopside[CaFe(SiO_3)_2]and the shape of the crystal is like the granule,diameter is about 0.2 -0.6μm.A glass-ceramic with nucleation temperature of 695℃for two hours and crystallization temperature of 893℃for one hour and 1 163℃for half-hour exhibited the best combination of properties.This method of slag mixed with melting additives to adjust the composition of the parent glass is important for the industrial production of glass-ceramics by direct utilization of hot steel slag.展开更多
针对钢箱梁桁架式纵隔板中出现的早发性、多发性、再发性疲劳开裂病害,分析桁架式纵隔板病害原因,基于能量法,提出将端部刚接斜腹杆变为端部铰接的弹性阻尼支撑处治技术。研制弹性阻尼支撑装置(Elastic-Damping Support Device,EDSD),...针对钢箱梁桁架式纵隔板中出现的早发性、多发性、再发性疲劳开裂病害,分析桁架式纵隔板病害原因,基于能量法,提出将端部刚接斜腹杆变为端部铰接的弹性阻尼支撑处治技术。研制弹性阻尼支撑装置(Elastic-Damping Support Device,EDSD),将斜腹杆局部切除并安装EDSD,通过EDSD中设置的弹性阻尼单元耗散外部荷载输入结构的大部分能量,保障结构在长期车辆荷载等作用下的安全性和正常使用性能。结合某斜拉桥钢箱梁桁架式纵隔板疲劳开裂处治需求,开展了该处治技术实桥应用,并对其进行有限元分析及实桥监测。结果表明:钢箱梁内斜腹杆局部改造安装EDSD后可大幅降低斜腹杆应力水平,有效降低斜腹杆疲劳易损部位开裂风险,增加疲劳寿命;安装EDSD的斜腹杆上的既有裂缝均无扩展。展开更多
The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing...The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation.展开更多
文摘A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to the total impacts, and to determine how the impacts compare to the primary alternative product, galvanized steel posts. Guard rail posts are the supporting structures for highway guard rails. Transportation engineers, as well as public and regulatory interests, have increasing need to understand the environmental implications of guard rail post selection, in addition to factors such as costs and service performance. This study uses a life cycle inventory (LCI) to catalogue the input and output data from guard rail post manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to assess anthropogenic and net greenhouse gas (GHG), acidification, smog, ecotoxicity, and eutrophication potentially resulting from life cycle air emissions. Other indicators of interest also are tracked, such as fossil fuel and water use. Comparisons of guard rail post products are made at a functional unit of one post per year of service. This life cycle assessment (LCA) finds that the manufacture, use, and disposition of CCA-treated wood guard rails offers lower fossil fuel use and lower anthropogenic and net GHG emissions, acidification, smog potential, and ecotoxicity environmental impacts than impact indicator values for galvanized steel posts. Water use and eutrophication impact indicator values for CCA-treated guard rail posts are greater than impact indicator values for galvanized steel guard rail posts.
基金The investigation is supported by the WeIding Labc--ratory, Institute of Metal Research of Chinese Atedemy Qf SciEllcGs.
文摘A softening zone with recrystallized grain around the prepared crack tip in the shock waves treated C-Mn steel weld metal was observed. It is suggested that a dynamic recovery occurred around the prepared crack tip even at a low explosion pressure (5 GPa) because of the stress and strain concentration at the crack tip when shock waves pass through. This result supports the previous work on the improved mechanical properties of a shock treated welded joint with residual crack from the viewpoint of microstructure.
基金The authors would like to thank OAD (Austrian Academic Exchange Service) and the Chinese Ministry of Education as well as the Shanghai Municaipal Commission of Education for financial support.
文摘The influence of heat treating on mechanical properties as well as on the sliding wear behavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite, pearlite and lower bainite depending on the heat treating conditions. Heat treating increases the hardness of sintered steels but high tempering temperature, i.e. 700℃, causes the hardness to be even lower than that of the as-sintered ones. The impact energy of sintered steels increases with increasing tempering temperature and arrives the highest at 700℃, while the steels tempered at 200℃ have the highest transverse rupture strength. Austempering results in fair good overall properties, such as hardness, impact energy, and transverse rupture strength. When the sintered steels were austempered, oil-quenched or tempered below 400? after quenched, the wear coefficient becomes considerably lower. Fair high hardness, such as HV30 】 380, and structures of martensite, tempered martensite or lower bainite are beneficial to lowering the wear coefficient. Under the wear test conditions given, delamination and oxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4 in the wear debris is beneficial to lowering wear coefficient.
基金Projects(51471112,51611130204)supported by the National Natural Science Foundation of China
文摘Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.
文摘When liquid steel slag produced from steelmaking process was treated into the post-cold slag by conventional methods,the great deal of slag heat was dissipated into the environment,causing a lot of energy waste and environmental pollution.In this study,a novel approach of direct utilization of hot steel slag as a raw material and slag heat for the production of glass-ceramics was proposed and experimentally tested.In order to simulate liquid slag from steelmaking electric furnace,40%water-quenched slag was remelted at 1 450℃and then mixed with 60%melting additives(silica powder,alumina powder and sodium oxide, etc.)and subsequently melted together at 1 500℃for 1 h into modified liquid slag which was cast,heat-treated, annealed and transformed into glass-ceramics.The heat-treated glass samples were investigated using differential thermal analysis(DTA),X-ray diffraction(XRD),and scanning electron microscopy(SEM). The results show that dominant crystalline phase is diopside[CaFe(SiO_3)_2]and the shape of the crystal is like the granule,diameter is about 0.2 -0.6μm.A glass-ceramic with nucleation temperature of 695℃for two hours and crystallization temperature of 893℃for one hour and 1 163℃for half-hour exhibited the best combination of properties.This method of slag mixed with melting additives to adjust the composition of the parent glass is important for the industrial production of glass-ceramics by direct utilization of hot steel slag.
文摘针对钢箱梁桁架式纵隔板中出现的早发性、多发性、再发性疲劳开裂病害,分析桁架式纵隔板病害原因,基于能量法,提出将端部刚接斜腹杆变为端部铰接的弹性阻尼支撑处治技术。研制弹性阻尼支撑装置(Elastic-Damping Support Device,EDSD),将斜腹杆局部切除并安装EDSD,通过EDSD中设置的弹性阻尼单元耗散外部荷载输入结构的大部分能量,保障结构在长期车辆荷载等作用下的安全性和正常使用性能。结合某斜拉桥钢箱梁桁架式纵隔板疲劳开裂处治需求,开展了该处治技术实桥应用,并对其进行有限元分析及实桥监测。结果表明:钢箱梁内斜腹杆局部改造安装EDSD后可大幅降低斜腹杆应力水平,有效降低斜腹杆疲劳易损部位开裂风险,增加疲劳寿命;安装EDSD的斜腹杆上的既有裂缝均无扩展。
基金financial support of the National Key Research and Development Program of China(No.2017YFB0304401)National Natural Science Foundation of China(Nos.U1564203,51571141 and 51201105)the support provided by Shanghai Key Laboratory of Materials Laser Processing and Modification,Shanghai Jiao Tong University
文摘The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation.