The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ ...The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.展开更多
Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In...Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.展开更多
Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution o...Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.60578041)the National High Tech-nology Research and Development Program of China (Grant No.715-006-0060)
文摘The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.
基金This work was supported by the National Key Basic Research Program of China (No.2013CB921800), the National Natural Science Foundation of China (No.11374291, No.11311120047, No.11274299, No.11447197, and No.11204292), the Fundamen- tal Research Funds for the Central Universities (No.WK20304200), the Anhui Provincial Natural Science Foundation (No.1508085QA09). The numerical calculations have been partially done on the super- computing system in the Supercomputing Center of University of Science and Technology of China.
文摘Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.
基金the National Natural Science Foundation of China (20571019)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang (LC06C130)Program of Harbin Subject Chief Scientist
文摘Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K.