Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation...Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.展开更多
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur...The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.展开更多
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantl...LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP.展开更多
SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10...SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10-7:1.02×10 7:0.87×107=1.66:1.33:1.1 7:1,浸渍混合饱和溶液的抗氧化能力比浸渍Ca3(PO4)2饱和溶液强.展开更多
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)cathode material of the sodium ion battery(1 C=117 mAh g-1)has a NASICON-type structure,which not only facilitates the rapid migration of sodium ions,but also has a small volume deformation during sodium ion de-intercalation and the main frame mechanism remains unchanged,and thus is seen as an energy storage material for a wide range of applications,but has a limited electronic conductivity due to its structure.In this paper,NVP cathode materials with finer primary particles are successfully prepared using a simple hydrothermal treatment-assisted sol-gel method.The increased pore size of the NVP materials prepared under the hydrothermal process allows for more active sites and more effective resistance to the volume deformation of sodium ions during insertion/extraction processes,effectively facilitating the diffusion of ions and electrons.The Na_(3)V_(2)(PO_(4))_(3) material obtained by the optimized process exhibited good crystallinity in XRD characterization,as well as superior electrochemical properties in a series of electrochemical tests.A specific capacitance of 106.3 mAh g^(-1) at 0.2 C is demonstrated,compared to 96.5 mAh g^(-1) for Na_(3)V_(2)(PO_(4))_(3) without hydrothermal treatment,and cycling performance is also improved with 93%capacity retention.The calculated sodium ion diffusion coefficient(DNa=5.68×10^(-14))obtained after EIS curve fitting of the improved sample illustrates that the pore structure is beneficial to the performance of the Na_(3)V_(2)(PO_(4))_(3)cathode material.
基金Project(2007BAQ01055)supported by the National Key Technology R&D Program of ChinaProject(2011SCU11081)supported by the Sichuan University Funds for Young Scientists,ChinaProject(20120181120103)supported by Ph.D.Programs Foundation of the Ministry of Education of China
文摘The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
基金Project (2007BAQ01055) supported by the National Key Technology R&D Programs of ChinaProject (50574063) supported by theNational Natural Science Foundation of China
文摘LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP.
文摘SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10-7:1.02×10 7:0.87×107=1.66:1.33:1.1 7:1,浸渍混合饱和溶液的抗氧化能力比浸渍Ca3(PO4)2饱和溶液强.