The nanocomplex oxides of Sn-In and Sn-In-Ti were prepared by controlled co-precipitation method as sensing materials of semiconductor gas sensors for detection of CO, CH4 and NO2. Through manipulating the Sn/In catio...The nanocomplex oxides of Sn-In and Sn-In-Ti were prepared by controlled co-precipitation method as sensing materials of semiconductor gas sensors for detection of CO, CH4 and NO2. Through manipulating the Sn/In cation ratio, metal salt total concentration, precipitation pH value and aging time, the nanocrystalline powders were successfully derived with chemical homogeneity and superior thermal stability, compared with the single component oxides. The particle size and morphology, surface area, and thermal and phase stabilities were characterized using TEM, TG-DTA, BET and XRD. The sensing tests showed that the Sn-In com-posites exhibit high sensitivity and selectivity for CO and NO2. The introduction of TiO2 enhanced CH4 sensitivity and selectivity, particularly, additives of Pd and Al2O3 as a dopant and surface modification greatly enhanced the sensing properties. The sensitivity depended on the composition of composites, calcination temperature and operating temperature. The optimal values were (25%In2O3- 75%SnO2)-20%TiO2 for ternary composite, 600 and 300℃, respectively. Temperature-programmed de-sorption (TPD) studies were employed to explain the gas adsorption behavior dis-played by the surface of nanocomposites and X-ray photoelectron spectroscopic (XPS) analysis was used to confirm the electronic interactions existing between oxide components. The sensing mechanism of the nanocomposites was attributed to chemical and electronic synergistic effects.展开更多
基金the National Natural Science Foundation of China (Grant No.20577001)Beijing Natural Science Foundation (Grant Nos. 8072018, 8062011)
文摘The nanocomplex oxides of Sn-In and Sn-In-Ti were prepared by controlled co-precipitation method as sensing materials of semiconductor gas sensors for detection of CO, CH4 and NO2. Through manipulating the Sn/In cation ratio, metal salt total concentration, precipitation pH value and aging time, the nanocrystalline powders were successfully derived with chemical homogeneity and superior thermal stability, compared with the single component oxides. The particle size and morphology, surface area, and thermal and phase stabilities were characterized using TEM, TG-DTA, BET and XRD. The sensing tests showed that the Sn-In com-posites exhibit high sensitivity and selectivity for CO and NO2. The introduction of TiO2 enhanced CH4 sensitivity and selectivity, particularly, additives of Pd and Al2O3 as a dopant and surface modification greatly enhanced the sensing properties. The sensitivity depended on the composition of composites, calcination temperature and operating temperature. The optimal values were (25%In2O3- 75%SnO2)-20%TiO2 for ternary composite, 600 and 300℃, respectively. Temperature-programmed de-sorption (TPD) studies were employed to explain the gas adsorption behavior dis-played by the surface of nanocomposites and X-ray photoelectron spectroscopic (XPS) analysis was used to confirm the electronic interactions existing between oxide components. The sensing mechanism of the nanocomposites was attributed to chemical and electronic synergistic effects.