The present study aims to investigate the equation of state(EOS)parameters of CaMg3 in aReCh(D09),AIFR(DO3),CU3A11(LI2)and CuTi3(L60)structures,using full potential linear muffin-tin orbitals(FP-LMTO)approach based on...The present study aims to investigate the equation of state(EOS)parameters of CaMg3 in aReCh(D09),AIFR(DO3),CU3A11(LI2)and CuTi3(L60)structures,using full potential linear muffin-tin orbitals(FP-LMTO)approach based on the density functional theory(DFT).The local density approximation(LDA)and the generalized gradient approximation(GGA)were both applied for the exchange-correlation potential term.The calculated equation of slate parameters at equilibrium,in general,agreed well with the available data of the literature.The calculations showed that under compression CaMg3 transforms from DO3 to DO9 at about 29.96GPa,and 25.1 GPa using LDA and GGA,respectively.The elastic constants C,y,aggregate moduli,Vickers hardness,sound velocity,and Debye temperature of CaMg3 in D03 structure were also reported,discussed and analyzed.Using LDA(GGA),the calculated values of Hv andθD were found at around 5.80GPa(5.93GPa)and 393.44 K(389.91 K),respectively.Electronic band structure,total density of states(TDOS)as well as the partial density of states(PDOS)have been also obtained.The electronic band structure confirms the metallic behavior of CaMg3 in DO3 phase,the valence bands are dominated by the maximum contribution of‘d’like states of Ca in the energy ranging from 2 to 3 eV for GGA,and from 4.5 to 5 eV for LDA,respectively.展开更多
CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and tempe...CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.展开更多
Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were ch...Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.展开更多
文摘The present study aims to investigate the equation of state(EOS)parameters of CaMg3 in aReCh(D09),AIFR(DO3),CU3A11(LI2)and CuTi3(L60)structures,using full potential linear muffin-tin orbitals(FP-LMTO)approach based on the density functional theory(DFT).The local density approximation(LDA)and the generalized gradient approximation(GGA)were both applied for the exchange-correlation potential term.The calculated equation of slate parameters at equilibrium,in general,agreed well with the available data of the literature.The calculations showed that under compression CaMg3 transforms from DO3 to DO9 at about 29.96GPa,and 25.1 GPa using LDA and GGA,respectively.The elastic constants C,y,aggregate moduli,Vickers hardness,sound velocity,and Debye temperature of CaMg3 in D03 structure were also reported,discussed and analyzed.Using LDA(GGA),the calculated values of Hv andθD were found at around 5.80GPa(5.93GPa)and 393.44 K(389.91 K),respectively.Electronic band structure,total density of states(TDOS)as well as the partial density of states(PDOS)have been also obtained.The electronic band structure confirms the metallic behavior of CaMg3 in DO3 phase,the valence bands are dominated by the maximum contribution of‘d’like states of Ca in the energy ranging from 2 to 3 eV for GGA,and from 4.5 to 5 eV for LDA,respectively.
基金supported by the National Natural Science Foundation of China(21567008,21607064,21707055,21763011)Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology+2 种基金Program of 5511 Talents in Scientific Technological Innovation of Jiangxi Province(20165BCB18014)Academic and Technical Leaders of the Main Disciplines in Jiangxi Province(20172BCB22018)Jiangxi Province Natural Science Foundation China(20161BAB203090,20161BAB213083,20171ACB21041)~~
文摘CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.
基金Project supported by the National Natural Science Foundation of China (61008042 and 51072190)New Century Excellent Talents in University (NCET-07-0786)+1 种基金the Natural Science Foundation of Zhejiang Province (Y4080268 and Z4100030)the Science Technology Project of Zhejiang Province (2009C11149)
文摘Yttrium aluminum garnet structure phosphors Lu2CaMg2Si3O12:Mn2+ were synthesized by conventional high temperature solid-state reaction in reductive atmosphere. The structure and optical properties of samples were characterized by application of powder X-ray diffraction (XRD) and photoluminescence spectroscopy. Results of X-ray diffraction (XRD) analysis showed that the phosphors mainly presented garnet structure with a few weak peaks of impurity phases. Lu2-xCaMg2Si3O12:xMn2+ (x=0.01-0.8) phosphors showed a broad emission band peaking at around 590 nm under ultraviolet (UV) light of 408 nm when Mn2+ concentration was less than 0.08 mol. With an increase in the Mn2+ concentration (above 0.08), another broad emission band peaking at 720 nm besides 590 nm was observed, which may be due to manganese ion having different valence and occupying different host lattice. The critical quenching concentrations of manganese ion in the wavelength of 590 and 720 nm were about 0.06 and 0.2 mol, respectively. With 408 nm excitation wavelength, emission color of the samples had a red shift trend as the Mn2+ concentration increased. All the results indicated that the Lu2CaMg2Si3O12:Mn2+ phosphors could be applicable to n-UV based white LEDs.