目的探讨柴胡皂苷D调控CaMKKβ/AMPK信号通路,在功能性消化不良中对胃肠道Cajal间质细胞(Interstitial cells of Cajal,ICCs)细胞自噬的作用及机制。方法分离大鼠原代ICCs细胞,谷氨酸刺激构建ICCs自噬模型,免疫荧光检测Ca2+水平。将原代...目的探讨柴胡皂苷D调控CaMKKβ/AMPK信号通路,在功能性消化不良中对胃肠道Cajal间质细胞(Interstitial cells of Cajal,ICCs)细胞自噬的作用及机制。方法分离大鼠原代ICCs细胞,谷氨酸刺激构建ICCs自噬模型,免疫荧光检测Ca2+水平。将原代ICCs细胞分为对照组、模型组、模型+柴胡皂苷D组、模型+CaMKKβ抑制剂组、模型+柴胡皂苷D+CaMKKβ抑制剂组。透射电镜观察自噬体超微结构,ELISA检测Ghrelin和SP的水平,免疫荧光检测Ca2+和LC-3Ⅱ的表达,Western blot检测LC-3Ⅱ/Ⅰ、CaMKKβ、p-AMPK、Drp1、MFN2、IP3R和RyR的蛋白表达水平。结果谷氨酸诱导的模型组ICCs中LC-3Ⅱ荧光表达增强。柴胡皂苷D干预可降低Ca2+浓度,降低CaMKKβ、AMPK和MFN2水平(P<0.01),增加LC-3Ⅱ/Ⅰ、IP3R、RyR、Drp1、Ghrelin和SP水平(P<0.01)。柴胡皂苷D联合CaMKKβ抑制剂STO-609干预后效果更显著。结论柴胡皂苷D可通过CaMKKβ/AMPK信号通路介导Ca2+外流,影响ICCs细胞过度自噬及胃肠动力相关因子的表达。展开更多
Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcino...Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcinoma related expression chips were obtained and the regulatory mirnas of candidate genes were predicted, and the predicted results were analyzed. The effects of miR-448 and MAGEA6 on the pellet formation rate and clone formation rate of hepatocellular carcinoma stem cells were detected by immunofluorescence identification of stem cell markers and light microscope counting method. The effects of miR-448 and MAGEA6 on migration and invasion of hepatocellular carcinoma stem cells were detected by scratch and Transwell assay. Dual luciferase reporter assay to verify whether miR-448 targets MAGEA6. The expression and influence of miR-448 on MAGEA6 and AMPK pathway were detected by qRT-PCR and Western blot. Results: It was found that miR-448 may directly regulate the expression of MAGEA6. Overexpression of miR-448 inhibited the characteristics, proliferation, migration, and invasion of hepatocellular carcinoma stem cells in vitro, as well as the ability of xenograft tumor formation in vivo. However, inhibition of miR-448 showed opposite results. In addition, miR-448 directly targets MAGEA6 and regulates AMPK signaling. Silencing MAGEA6 and adding AMPK activator further verified that miR-448 activated AMPK signaling pathway by targeting MAGEA6, thus affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. Conclusions: Our results reveal that miR-448 activates AMPK signaling pathway by targeting MAGEA6, thereby affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. It is suggested that overexpression of miR-448 may be a new therapeutic strategy for hepatocellular carcinoma.展开更多
BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus...BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.展开更多
[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was st...[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was studied to explore its potential mechanism.[Methods]45 SD rats were randomly divided into 4 groups:normal control group,model control group and DCP treatment groups(100 and 300 mg/kg).The rats in the normal control group were fed with ordinary fodder,and the rats in other groups were fed with high-fat and high-sugar diet for 14 weeks to establish NAFLD model.From the 9^(th)week,the rats in the DCP treatment groups were given different doses of DCP by intragastric administration(5 mL/kg)for 6 weeks.After the last intragastric administration,the rats fasted for 16 h,and the serum and liver of rats were collected for detection.Hematoxylin-eosin(HE)staining was conducted to observe the histopathological changes of rat liver,and alanine aminotransferase(ALT),aspartate aminotransferase(AST),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),malondialdehyde(MDA),triglyceride(TG),total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),and high density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Interleukin-6(IL-6),interleukin-1β(IL-1β),tumor necrosis factor(TNF-α)and micrornA-141(micro RNA-141)were detected by reverse transcription-polymerase chain reaction(RT-PCR).The expression of SIRT1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)in rat liver was detected by western blot.[Results]Compared with the model control group,the inflammatory damage and steatodegeneration of rats in the DCP groups were relieved to varying degrees,and the number of lipid vacuoles significantly reduced.The ALT,AST,TC,TG and LDL-C content in the serum and MDA content in the liver tissue decreased to varying degrees,while the HDL-C,SOD and GSH-Px content increased.The expression of SIRT1 and AMPK increased,while the expression of miR-141,TNF-α,IL-6 and IL-1βdeclined,and the DCP 300 mg/kg treatment group had better improvement effect.[Conclusions]DCP had a certain protective effect on NAFLD rats,which may be related to the regulation of miR-141/AMPK/SIRT1 signaling pathway.展开更多
Baekgound Recent studies have suggested a potential role for liraglutide in the prevention and stabilization ofatherosclerotic vascular disease. However, the molecular mechanisms underlying the effect of liraglutide o...Baekgound Recent studies have suggested a potential role for liraglutide in the prevention and stabilization ofatherosclerotic vascular disease. However, the molecular mechanisms underlying the effect of liraglutide on atherosclerosis have not been well elucidated. The pur- pose of this study was to examine whether liraglutide protects against oxidative stress and fatty degeneration via modulation of AMP-activated protein kinase (AMPK)/sterol regulatory element binding transcription factor 1 (SREBP1) signaling pathway in foam ceils. Methods Mouse macrophages Raw264.7 cells were exposed to oxidized low density lipoprotein (oxLDL) to induce the formation of foam cells. The cells were incubated with oxLDL (50 μg/mL), liraglutide (0.1, 0.5, 1 and 2 nmol/L) or exendin-3 (9-39) (1, 10 and 100 nmol/L) alone, or in combination. Oil Red O staining was used to detect intracellular lipid droplets. The levels of TG and cholesterol were measured using the commercial kits. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase 1 (SOD). Western blot analysis was used to examine the expression of AMPKal, SREBP1, phosphory- lated AMPKal, phosphorylated SREBP1, glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R). Results Oil Red O staining showed that the cytoplasmic lipid droplet accumulation was visibly decreased in foam cells by treatment with liraglutide. The TG and cholesterol content in the liraglutide-treated foam cells was significantly decreased. In addition, foam ceils manifested an impaired oxidative stress following liraglutide treatment, as evidenced by increased SOD, and decreased ROS and MDA. However, these effects of liraglutide on foam cells were attenuated by the use of GLP-IR antagonist exendin-3 (9-39). Furthermore, we found that the expression level of AMPKa 1 and phosphorylated AMPKct 1 was significantly increased while the expression level of SREBP 1 and phosphorylated SREBP 1 was significantly decreased in foam cells following treatment with liraglutide. Conclusions This study for the first time demonstrated that the effect of liraglutide on reducing oxidative stress and fatty degeneration in oxLDL-induced Raw264.7 cells is accompanied by the alteration of AMPK/SREBP1 pathway. This study provided a potential molecular mechanism for the effect of liraglutide on reducing oxidative stress and fatty degeneration.展开更多
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the c...Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.展开更多
Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFL...Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFLD and IR.However,the possible mechanism underlying the effects of JGXZ on NAFLD and IR remains unknown.Methods:Fifty rats received a high-fat high-carbohydrate(HFHC)diet for 12 weeks to induce NAFLD.After 4 weeks of HFHC treatment,rats were orally treated with JGXZ(8,16,and 32 g/kg weight)for 8 weeks.Ten rats in the control group received standard chow.In the positive control group,rats were orally treated with metformin(90 mg/kg weight)for 8 weeks.After JGXZ and metformin treatment,H&E staining was conducted on rat livers and serum biochemical markers,including alanine aminotransferase(ALT),aspartate aminotransferase(AST),triglyceride(TG),and total cholesterol(TC),were measured using test kits.Moreover,a fasting blood glucose test and an oral glucose tolerance test(OGTT)were conducted.Serum levels of insulin were determined using ELISA kit,and the homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.The levels of total insulin receptor substrate-1(IRS1),AMP-activated protein kinase-α(AMPKα)and c-Jun N-terminal kinase(JNK)as well as the levels of phosphorylation of IRS1(p-IRS1),phosphorylation of AMPK(p-AMPK)and phosphorylation of JNK(p-JNK)were measured using western blotting.Results:The body weights in JGXZ low-,middle-,and high-dose groups were lower than those in the model group(P<0.05,P<0.01,P<0.01,respectively).The serum levels of AST(P<0.05 in JGXZ middle-and high-dose groups),ALT(P<0.01 in JGXZ middle-dose group and P<0.05 in JGXZ high-dose group),TG(P<0.01 in JGXZ middle-and high-dose groups),and TC(P<0.01)upon JGXZ treatment were lower those than in NAFLD model rats.H&E staining showed that JGXZ treatment reduced steatosis of the hepatocytes in NAFLD model rats.JGXZ decreased the levels of fasting blood glucose(P<0.01),HOMA-IR(P<0.01),AUC(area under the curve)of the OGTT(P<0.05)and p-IRS1(P<0.01 in JGXZ middle-and high-dose groups,P<0.05 in JGXZ low-dose groups).Moreover,JGXZ regulated the hepatic AMPKα/JNK pathway in NAFLD model rats,which reflected the induction of p-AMPKαand inhibition of p-JNK.Conclusion:This study showed that JGXZ improved liver function and reduced steatosis of the hepatocytes in NAFLD model rats.Moreover,JGXZ improved IR in NAFLD model rats.The possible mechanism underlying the effects of JGXZ on NAFLD and IR involves the modulation of the AMPK/JNK pathway.展开更多
多项研究发现,目前近视的患病率在全球范围内成爆发性增长,且逐渐呈低龄化趋势。伴随着近视进展,屈光度不断增加、眼轴进行性的延长会引起一系列的眼部并发症,例如视网膜萎缩、视网膜脱离、视网膜变薄及撕裂等。Ca^(2+)/钙调蛋白活化的...多项研究发现,目前近视的患病率在全球范围内成爆发性增长,且逐渐呈低龄化趋势。伴随着近视进展,屈光度不断增加、眼轴进行性的延长会引起一系列的眼部并发症,例如视网膜萎缩、视网膜脱离、视网膜变薄及撕裂等。Ca^(2+)/钙调蛋白活化的蛋白激酶-β(Ca^(2+)/calmodulin-dependent protein kinase kinaseβ,CaMKKβ)/腺苷单磷酸激活的蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)信号通路是调节细胞能量代谢的经典途径之一,CaMKKβ响应于Ca^(2+)的增加而通过磷酸化激活AMPK,进一步激活自噬。近期研究发现近视视网膜病变与CaMKKβ/AMPK信号通路密切相关,故本文将主要探讨和介绍近视患者的视网膜病变与CaMKKβ/AMPK信号通路的相关性。展开更多
Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,howev...Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.展开更多
OBJECTIVE Mu-Xiang-You-Fang(MXYF)is a classic prescription of Hui medicine,composed of five herbs,which has been used to treat ischemic stroke for many years.However,the potential pharmacological mecha⁃nisms of MXYF r...OBJECTIVE Mu-Xiang-You-Fang(MXYF)is a classic prescription of Hui medicine,composed of five herbs,which has been used to treat ischemic stroke for many years.However,the potential pharmacological mecha⁃nisms of MXYF remain unclear.The present research is to investigate the neuroprotective effect of MXYF and its role in modulating autophagy via AMPK/mTOR signaling pathway in the PC12 oxygen-glucose deprivation and reperfusion(OGD/R)injury model.METHODS MXYF was extracted by supercritical CO2 fluid extraction apparatus.PC12 OGD/R injury model was established by oxygen-glucose deprivation for 2 h and reperfusion for 24 h.The effects of MXYF on the viability and cytotoxicity of PC12 cells were determined through cell counting kit(CCK-8)assay.Colorimetric method was performed to determine the LDH leakage rate.The calcium concentration was determined by chemical fluorescence method and the mitochondrial membrane potential was determined through flow cytometry.Monodansylcadaverine(MDC)staining was conducted to detect autophagosome formation.The expression of LC3,Beclin1,p62,p-AMPK,ULK1,p-mTOR and p-p70s6k proteins were determined by immunofluorescence and Western blotting analyses.RESULTS MXYF(1,2 and 4 mg·L^-1)could significantly increase the cell viability and mitochondrial membrane potential,while decreased the release of lactate dehydrogenase(LDH)and calcium concentration in PC12 cells.Mechanistic studies showed that MXYF reduced the LC3-II/LC3-I ratio and inhibited the expression of beclin1,p-AMPK and ULK1.In comparison,the expres⁃sion of p-mTOR,p-p70s6k and p62 were significantly enhanced.CONCLUSION MXYF inhibits autophagy after OGD/Rinduced PC12 cell injury through AMPK-mTOR pathway,thus MXYF might have therapeutic potential for treating the ischemic stroke.展开更多
Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of...Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of the rational use of ivabradine(IVA)against PRMD,however,the molecular mechanisms of IVA remain unknown.In this study,an ischemia-reperfusion injury(IRI)model was established using hypoxic chambers.The results demonstrated that pretreatment with IVA reduced IRI-induced cytotoxicity and apoptosis.IVA attenuated mitochondrial damage,eliminated excess reactive oxygen species(ROS),suppressed IRI-induced ATP and NAD+,and increased the AMP/ATP ratio.We further found that IVA increased the mRNA levels of sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α)and upregulated the expression levels of phosphorylated AMP-activated protein kinase(p-AMPK)/AMPK,SIRT1,and PGC-1αproteins.Interestingly,no change in AMPK mRNA levels was observed.Cardiomyocyte energy metabolism significantly changed after IRI.The aim of this study was to demonstrate the cardioprotective effect of Ivabradine via the AMPK/SIRT1/PGC-1αsignaling pathway in myocardial ischemia/reperfusion injury-induced in H9c2 cell.展开更多
Rhizoma Coptidis,a traditional Chinese herbal medicine,has been used for treating diabetes for thousands of years.However,the molecular basis for this action has not been elucidated.In the present study,the effects of...Rhizoma Coptidis,a traditional Chinese herbal medicine,has been used for treating diabetes for thousands of years.However,the molecular basis for this action has not been elucidated.In the present study,the effects of seven main alkaloids of Rhizoma Coptidis on glycometabolism were investigated and the related molecular mechanism of five active compounds on insulin resistant(IR)cell model was explored for the first time.Results showed that berberine,palmatine,epiberberine,columbamine and groenlandicine enhanced glucose consumption in the palmitic acid(PA)-induced IR-HepG2 cells,indicating that these compounds could improve IR.In addition,we found that among these active alkaloids,berberine,columbamine,epiberberine and groenlandicine could inhibit the activation of ERK and p38 pathway,while berberine,columbamine,palmatine and epiberberine could activate AMPK pathway.Moreover,palmatine and columbamine regulated the mRNA expression of GLUT2 to ameliorate IR via activating AMPK and inactivating p38 MAPK signal pathway.To sum up,berberine,columbamine,palmatine,epiberberine and groenlandicine might be the active reagents,which contribute to the glucose lowering effects of Rhizoma Coptidis.展开更多
Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society an...Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.展开更多
Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the pro...Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the promotion of the AMPK/SIRT/PGC-1α signalling pathway.Methods:Rats were randomly divided into 4 groups:the normal group,the model group,the YYHQ granule group,and the pioglitazone group.The type 2 diabetic rat model was established by feeding a high-fat diet for 5 weeks along with a single intraperitoneal injection of 30 mg/kg streptozotocin (STZ).After modelling successfully,the appropriate drug was intragastrically administered to diabetic rats for 2 weeks,once per day.The YYHQ granule group was given a dose of 4.8 g/kg body weight per day,the pioglitazone group was given a dose of 1.35 mg/kg body weight per day.The doses for both groups were equivalent to the clinical equivalent dose based on a previous study.Other groups were gavaged with the same amount of saline water.Body weight,food intake,water intake,urine volume and grip strength were recorded weekly.The fasting blood glucose(FBG) was determined weekly using blood glucose test strips.The related glucose and lipid metabolism indexes,e.g.,fasting insulin (Fins),glycated haemoglobin (GHb),HOMA-IR,ISI,triglycerides (TG),total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C) and free fatty acid (FFA),were determined using biochemical method.The mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK),peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α),carnitine palmitoyl transterase-1 (CPT-1),Sirtuin 1 (SIRT1),and Sirtuin 3 (SIRT3) were assessed using quantitative real-time PCR (qRT-PCR).The protein expression levels of creatine kinase (CK),Ca2+ ATPase,α-Actin,AMPK,PGC-1α and CPT-1 were determined using enzyme-linked immunosorbent assay method (ELISA).Results:Body weight decreased significantly (P <.01),food intake,water intake and urine volume increased significantly (P <.01),and grip strength decreased significantly (P <.01) in the model group compared with the normal group.The levels of FBG,Fins,GHb and HOMA-IR increased significantly (P <.01),and the ISI decreased significantly (P <.01) in the model group.The levels of TG,TC,LDL-C and FFA increased significantly (P <.05 or P <.01),and the level of HDL-C decreased significantly (P <.05) in the model group.These changes were reversed after treatment with YYHQ granule or pioglitazone.Compared with the model group,the YYHQ granule and pioglitazone groups significantly improve body weight,water intake and urine volume (P <.05 or P <.01),however,both treatments had no significant effect on food intake (P >.05).The levels of FBG,Fins,GHb,HOMA-IR and ISI were improved significantly (P <.01) and the levels of TG,TC and LDL-C were improved significantly (P <.05 or P <.01),however,both treatments had no significant effect on the levels of HDL-C and FFA (P >.05).Further results indicated that YYHQ granule significantly decreased the mRNA expression of AMPK,PGC-1α,CPT-1,SIRT1 and SIRT3 in skeletal muscle (P <.01) and the pioglitazone group showed similar effects;moreover,the protein expression levels of CK,Ca2+ATPase,α-Actin,AMPK,PGC-1α and CPT-1 in skeletal muscle significantly decreased (P <.01),however,pioglitazone had no significant effect on CK and α-Actin (P >.05).Conclusion:The possible molecular mechanism of YYHQ granule improving skeletal muscle insulin resistance in a type 2 diabetic rat model may be related to the stimulation of energy metabolism in skeletal muscle via the AMPK/SIRT/PGC-1α signalling pathway.展开更多
文摘目的探讨柴胡皂苷D调控CaMKKβ/AMPK信号通路,在功能性消化不良中对胃肠道Cajal间质细胞(Interstitial cells of Cajal,ICCs)细胞自噬的作用及机制。方法分离大鼠原代ICCs细胞,谷氨酸刺激构建ICCs自噬模型,免疫荧光检测Ca2+水平。将原代ICCs细胞分为对照组、模型组、模型+柴胡皂苷D组、模型+CaMKKβ抑制剂组、模型+柴胡皂苷D+CaMKKβ抑制剂组。透射电镜观察自噬体超微结构,ELISA检测Ghrelin和SP的水平,免疫荧光检测Ca2+和LC-3Ⅱ的表达,Western blot检测LC-3Ⅱ/Ⅰ、CaMKKβ、p-AMPK、Drp1、MFN2、IP3R和RyR的蛋白表达水平。结果谷氨酸诱导的模型组ICCs中LC-3Ⅱ荧光表达增强。柴胡皂苷D干预可降低Ca2+浓度,降低CaMKKβ、AMPK和MFN2水平(P<0.01),增加LC-3Ⅱ/Ⅰ、IP3R、RyR、Drp1、Ghrelin和SP水平(P<0.01)。柴胡皂苷D联合CaMKKβ抑制剂STO-609干预后效果更显著。结论柴胡皂苷D可通过CaMKKβ/AMPK信号通路介导Ca2+外流,影响ICCs细胞过度自噬及胃肠动力相关因子的表达。
文摘Objective: To explore the role of miR-448 in regulating MAGEA6/AMPK signaling pathway in the biological study of hepatocellular carcinoma (HCC) tumor stem cells. Methods: Using the database, the hepatocellular carcinoma related expression chips were obtained and the regulatory mirnas of candidate genes were predicted, and the predicted results were analyzed. The effects of miR-448 and MAGEA6 on the pellet formation rate and clone formation rate of hepatocellular carcinoma stem cells were detected by immunofluorescence identification of stem cell markers and light microscope counting method. The effects of miR-448 and MAGEA6 on migration and invasion of hepatocellular carcinoma stem cells were detected by scratch and Transwell assay. Dual luciferase reporter assay to verify whether miR-448 targets MAGEA6. The expression and influence of miR-448 on MAGEA6 and AMPK pathway were detected by qRT-PCR and Western blot. Results: It was found that miR-448 may directly regulate the expression of MAGEA6. Overexpression of miR-448 inhibited the characteristics, proliferation, migration, and invasion of hepatocellular carcinoma stem cells in vitro, as well as the ability of xenograft tumor formation in vivo. However, inhibition of miR-448 showed opposite results. In addition, miR-448 directly targets MAGEA6 and regulates AMPK signaling. Silencing MAGEA6 and adding AMPK activator further verified that miR-448 activated AMPK signaling pathway by targeting MAGEA6, thus affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. Conclusions: Our results reveal that miR-448 activates AMPK signaling pathway by targeting MAGEA6, thereby affecting characteristics, proliferation, migration and invasion of hepatoma stem cells. It is suggested that overexpression of miR-448 may be a new therapeutic strategy for hepatocellular carcinoma.
基金Supported by Basic and Applied Basic Research Found of Guangdong Province,No.2022A1515011307。
文摘BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.
基金Supported by National Natural Science Foundation of China(81960779,82160811)Project for Degree and Graduate Education Reform in Guangxi(JGY2022215)。
文摘[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was studied to explore its potential mechanism.[Methods]45 SD rats were randomly divided into 4 groups:normal control group,model control group and DCP treatment groups(100 and 300 mg/kg).The rats in the normal control group were fed with ordinary fodder,and the rats in other groups were fed with high-fat and high-sugar diet for 14 weeks to establish NAFLD model.From the 9^(th)week,the rats in the DCP treatment groups were given different doses of DCP by intragastric administration(5 mL/kg)for 6 weeks.After the last intragastric administration,the rats fasted for 16 h,and the serum and liver of rats were collected for detection.Hematoxylin-eosin(HE)staining was conducted to observe the histopathological changes of rat liver,and alanine aminotransferase(ALT),aspartate aminotransferase(AST),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),malondialdehyde(MDA),triglyceride(TG),total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),and high density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Interleukin-6(IL-6),interleukin-1β(IL-1β),tumor necrosis factor(TNF-α)and micrornA-141(micro RNA-141)were detected by reverse transcription-polymerase chain reaction(RT-PCR).The expression of SIRT1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)in rat liver was detected by western blot.[Results]Compared with the model control group,the inflammatory damage and steatodegeneration of rats in the DCP groups were relieved to varying degrees,and the number of lipid vacuoles significantly reduced.The ALT,AST,TC,TG and LDL-C content in the serum and MDA content in the liver tissue decreased to varying degrees,while the HDL-C,SOD and GSH-Px content increased.The expression of SIRT1 and AMPK increased,while the expression of miR-141,TNF-α,IL-6 and IL-1βdeclined,and the DCP 300 mg/kg treatment group had better improvement effect.[Conclusions]DCP had a certain protective effect on NAFLD rats,which may be related to the regulation of miR-141/AMPK/SIRT1 signaling pathway.
文摘Baekgound Recent studies have suggested a potential role for liraglutide in the prevention and stabilization ofatherosclerotic vascular disease. However, the molecular mechanisms underlying the effect of liraglutide on atherosclerosis have not been well elucidated. The pur- pose of this study was to examine whether liraglutide protects against oxidative stress and fatty degeneration via modulation of AMP-activated protein kinase (AMPK)/sterol regulatory element binding transcription factor 1 (SREBP1) signaling pathway in foam ceils. Methods Mouse macrophages Raw264.7 cells were exposed to oxidized low density lipoprotein (oxLDL) to induce the formation of foam cells. The cells were incubated with oxLDL (50 μg/mL), liraglutide (0.1, 0.5, 1 and 2 nmol/L) or exendin-3 (9-39) (1, 10 and 100 nmol/L) alone, or in combination. Oil Red O staining was used to detect intracellular lipid droplets. The levels of TG and cholesterol were measured using the commercial kits. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase 1 (SOD). Western blot analysis was used to examine the expression of AMPKal, SREBP1, phosphory- lated AMPKal, phosphorylated SREBP1, glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R). Results Oil Red O staining showed that the cytoplasmic lipid droplet accumulation was visibly decreased in foam cells by treatment with liraglutide. The TG and cholesterol content in the liraglutide-treated foam cells was significantly decreased. In addition, foam ceils manifested an impaired oxidative stress following liraglutide treatment, as evidenced by increased SOD, and decreased ROS and MDA. However, these effects of liraglutide on foam cells were attenuated by the use of GLP-IR antagonist exendin-3 (9-39). Furthermore, we found that the expression level of AMPKa 1 and phosphorylated AMPKct 1 was significantly increased while the expression level of SREBP 1 and phosphorylated SREBP 1 was significantly decreased in foam cells following treatment with liraglutide. Conclusions This study for the first time demonstrated that the effect of liraglutide on reducing oxidative stress and fatty degeneration in oxLDL-induced Raw264.7 cells is accompanied by the alteration of AMPK/SREBP1 pathway. This study provided a potential molecular mechanism for the effect of liraglutide on reducing oxidative stress and fatty degeneration.
基金supported by the National Natural Science Foundation of China,No.81202625the Open Fund of Key Laboratory of Cardiovascular and Cerebrovascular Diseases Translational Medicine,China Three Gorges University,China,No.2016xnxg101
文摘Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.
基金This work was performed at the Yunnan University of Chinese Medicine,China,and was supported by the National Natural Science Foundation of China(8156150405)Natural Science Foundation of Tianjin(KL721).
文摘Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFLD and IR.However,the possible mechanism underlying the effects of JGXZ on NAFLD and IR remains unknown.Methods:Fifty rats received a high-fat high-carbohydrate(HFHC)diet for 12 weeks to induce NAFLD.After 4 weeks of HFHC treatment,rats were orally treated with JGXZ(8,16,and 32 g/kg weight)for 8 weeks.Ten rats in the control group received standard chow.In the positive control group,rats were orally treated with metformin(90 mg/kg weight)for 8 weeks.After JGXZ and metformin treatment,H&E staining was conducted on rat livers and serum biochemical markers,including alanine aminotransferase(ALT),aspartate aminotransferase(AST),triglyceride(TG),and total cholesterol(TC),were measured using test kits.Moreover,a fasting blood glucose test and an oral glucose tolerance test(OGTT)were conducted.Serum levels of insulin were determined using ELISA kit,and the homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.The levels of total insulin receptor substrate-1(IRS1),AMP-activated protein kinase-α(AMPKα)and c-Jun N-terminal kinase(JNK)as well as the levels of phosphorylation of IRS1(p-IRS1),phosphorylation of AMPK(p-AMPK)and phosphorylation of JNK(p-JNK)were measured using western blotting.Results:The body weights in JGXZ low-,middle-,and high-dose groups were lower than those in the model group(P<0.05,P<0.01,P<0.01,respectively).The serum levels of AST(P<0.05 in JGXZ middle-and high-dose groups),ALT(P<0.01 in JGXZ middle-dose group and P<0.05 in JGXZ high-dose group),TG(P<0.01 in JGXZ middle-and high-dose groups),and TC(P<0.01)upon JGXZ treatment were lower those than in NAFLD model rats.H&E staining showed that JGXZ treatment reduced steatosis of the hepatocytes in NAFLD model rats.JGXZ decreased the levels of fasting blood glucose(P<0.01),HOMA-IR(P<0.01),AUC(area under the curve)of the OGTT(P<0.05)and p-IRS1(P<0.01 in JGXZ middle-and high-dose groups,P<0.05 in JGXZ low-dose groups).Moreover,JGXZ regulated the hepatic AMPKα/JNK pathway in NAFLD model rats,which reflected the induction of p-AMPKαand inhibition of p-JNK.Conclusion:This study showed that JGXZ improved liver function and reduced steatosis of the hepatocytes in NAFLD model rats.Moreover,JGXZ improved IR in NAFLD model rats.The possible mechanism underlying the effects of JGXZ on NAFLD and IR involves the modulation of the AMPK/JNK pathway.
文摘多项研究发现,目前近视的患病率在全球范围内成爆发性增长,且逐渐呈低龄化趋势。伴随着近视进展,屈光度不断增加、眼轴进行性的延长会引起一系列的眼部并发症,例如视网膜萎缩、视网膜脱离、视网膜变薄及撕裂等。Ca^(2+)/钙调蛋白活化的蛋白激酶-β(Ca^(2+)/calmodulin-dependent protein kinase kinaseβ,CaMKKβ)/腺苷单磷酸激活的蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)信号通路是调节细胞能量代谢的经典途径之一,CaMKKβ响应于Ca^(2+)的增加而通过磷酸化激活AMPK,进一步激活自噬。近期研究发现近视视网膜病变与CaMKKβ/AMPK信号通路密切相关,故本文将主要探讨和介绍近视患者的视网膜病变与CaMKKβ/AMPK信号通路的相关性。
基金National Natural Science Foundation of China(31771128)the University of Macao (MYRG2016-00052-FHS+2 种基金MYRG2018-00134-FHS)Science and Technology Development Fund (FDCT)of Macao (FDCT 021/2015/A1016/2016/A1).
文摘Oxidative stress is one of the main causes of neurodegenerative diseases such as Alzheimer disease(AD).Our previous studies have shown that artemisinin,a anti-malaria Chinese medicine,with neuroprotective effect,however,the antioxidative effect of artemisinin and its potential mechanism remain to be elucidated.In the present study,the protective effect and the underlying mechanism of artemisinin against injury of hydrogen peroxide(H_2O_2) in SH-SY5Y and hippocampal neurons were studied.Our results show that artemisinin protected SH-SY5Y and hippocampal neuronal cells from H_2O_2-induced cell death at clinically relevant concentrations in a concentration-dependent manner.Further studies showed that artemisinin significantly reduced cell death caused by H_2O_2 by restoring nuclear morphology,abnormal changes in intracellular ROS,activation of caspase 3,lactate dehydrogenase release and mitochondrial membrane potential.Hoechst staining and flow cytometry showed that artemisinin significantly reduced the apoptosis of SH-SY5Y cells exposed to H_2O_2.Western blotting analysis showed that artemisinin stimulated the phosphorylation and activation of AMP-activated protein kinase(AMPK) in SH-SY5Y cells in a time and concentration-dependent manner,whereas the application of AMPK inhibitor Compound C or decrease in expression of AMPKα with shRNA specific for AMPKα blocked the protective effect of artemisinin.Similar results were obtained in primary cultured hippocampal neurons.Taken together,these results indicate that artemisinin can protect neuronal cells from oxidative damage,at least in part through the activation of AMPK.Because artemisinin is relatively inexpensive and has few side effects,our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.
基金National Natural Science Foundation of China(8166070081260679)Ningxia College FirstClass Discipline Construction Project(Chinese Medicine)Funded Project(NXYLXK2017A06)
文摘OBJECTIVE Mu-Xiang-You-Fang(MXYF)is a classic prescription of Hui medicine,composed of five herbs,which has been used to treat ischemic stroke for many years.However,the potential pharmacological mecha⁃nisms of MXYF remain unclear.The present research is to investigate the neuroprotective effect of MXYF and its role in modulating autophagy via AMPK/mTOR signaling pathway in the PC12 oxygen-glucose deprivation and reperfusion(OGD/R)injury model.METHODS MXYF was extracted by supercritical CO2 fluid extraction apparatus.PC12 OGD/R injury model was established by oxygen-glucose deprivation for 2 h and reperfusion for 24 h.The effects of MXYF on the viability and cytotoxicity of PC12 cells were determined through cell counting kit(CCK-8)assay.Colorimetric method was performed to determine the LDH leakage rate.The calcium concentration was determined by chemical fluorescence method and the mitochondrial membrane potential was determined through flow cytometry.Monodansylcadaverine(MDC)staining was conducted to detect autophagosome formation.The expression of LC3,Beclin1,p62,p-AMPK,ULK1,p-mTOR and p-p70s6k proteins were determined by immunofluorescence and Western blotting analyses.RESULTS MXYF(1,2 and 4 mg·L^-1)could significantly increase the cell viability and mitochondrial membrane potential,while decreased the release of lactate dehydrogenase(LDH)and calcium concentration in PC12 cells.Mechanistic studies showed that MXYF reduced the LC3-II/LC3-I ratio and inhibited the expression of beclin1,p-AMPK and ULK1.In comparison,the expres⁃sion of p-mTOR,p-p70s6k and p62 were significantly enhanced.CONCLUSION MXYF inhibits autophagy after OGD/Rinduced PC12 cell injury through AMPK-mTOR pathway,thus MXYF might have therapeutic potential for treating the ischemic stroke.
基金the National Natural Science Foundation Youth Science Foundation(No.81601661)the Science Foundation for Post-doctoral researchers in Anhui Province of China(No.2016B140).
文摘Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of the rational use of ivabradine(IVA)against PRMD,however,the molecular mechanisms of IVA remain unknown.In this study,an ischemia-reperfusion injury(IRI)model was established using hypoxic chambers.The results demonstrated that pretreatment with IVA reduced IRI-induced cytotoxicity and apoptosis.IVA attenuated mitochondrial damage,eliminated excess reactive oxygen species(ROS),suppressed IRI-induced ATP and NAD+,and increased the AMP/ATP ratio.We further found that IVA increased the mRNA levels of sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α)and upregulated the expression levels of phosphorylated AMP-activated protein kinase(p-AMPK)/AMPK,SIRT1,and PGC-1αproteins.Interestingly,no change in AMPK mRNA levels was observed.Cardiomyocyte energy metabolism significantly changed after IRI.The aim of this study was to demonstrate the cardioprotective effect of Ivabradine via the AMPK/SIRT1/PGC-1αsignaling pathway in myocardial ischemia/reperfusion injury-induced in H9c2 cell.
基金supported by Technology Major Project of China“Key New Drug Creation and Manufacturing Program”(No.2017ZX09301012-001)the National Natural Science Foundation of China(No.20972098,No.81703776 and No.81430095)the National Basic Research Program of China(No.2014CB560706).
文摘Rhizoma Coptidis,a traditional Chinese herbal medicine,has been used for treating diabetes for thousands of years.However,the molecular basis for this action has not been elucidated.In the present study,the effects of seven main alkaloids of Rhizoma Coptidis on glycometabolism were investigated and the related molecular mechanism of five active compounds on insulin resistant(IR)cell model was explored for the first time.Results showed that berberine,palmatine,epiberberine,columbamine and groenlandicine enhanced glucose consumption in the palmitic acid(PA)-induced IR-HepG2 cells,indicating that these compounds could improve IR.In addition,we found that among these active alkaloids,berberine,columbamine,epiberberine and groenlandicine could inhibit the activation of ERK and p38 pathway,while berberine,columbamine,palmatine and epiberberine could activate AMPK pathway.Moreover,palmatine and columbamine regulated the mRNA expression of GLUT2 to ameliorate IR via activating AMPK and inactivating p38 MAPK signal pathway.To sum up,berberine,columbamine,palmatine,epiberberine and groenlandicine might be the active reagents,which contribute to the glucose lowering effects of Rhizoma Coptidis.
基金National Natural Science Foundation(No.82004299)Enhancement Program of Evidence-based Therapy of Digestive System Diseases(gastroesophageal reflux disease)with Traditional Chinese Medicine(No.2019XZZX-XH003)Innovation Planning Program of Postgraduate Students Education of Guangxi University of Traditional Chinese Medicine in 2020(No.YCSY2020030)。
文摘Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.
基金This research was supported and funded by the National Natural Science Foundation of China(No.81373541).
文摘Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the promotion of the AMPK/SIRT/PGC-1α signalling pathway.Methods:Rats were randomly divided into 4 groups:the normal group,the model group,the YYHQ granule group,and the pioglitazone group.The type 2 diabetic rat model was established by feeding a high-fat diet for 5 weeks along with a single intraperitoneal injection of 30 mg/kg streptozotocin (STZ).After modelling successfully,the appropriate drug was intragastrically administered to diabetic rats for 2 weeks,once per day.The YYHQ granule group was given a dose of 4.8 g/kg body weight per day,the pioglitazone group was given a dose of 1.35 mg/kg body weight per day.The doses for both groups were equivalent to the clinical equivalent dose based on a previous study.Other groups were gavaged with the same amount of saline water.Body weight,food intake,water intake,urine volume and grip strength were recorded weekly.The fasting blood glucose(FBG) was determined weekly using blood glucose test strips.The related glucose and lipid metabolism indexes,e.g.,fasting insulin (Fins),glycated haemoglobin (GHb),HOMA-IR,ISI,triglycerides (TG),total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C) and free fatty acid (FFA),were determined using biochemical method.The mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK),peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α),carnitine palmitoyl transterase-1 (CPT-1),Sirtuin 1 (SIRT1),and Sirtuin 3 (SIRT3) were assessed using quantitative real-time PCR (qRT-PCR).The protein expression levels of creatine kinase (CK),Ca2+ ATPase,α-Actin,AMPK,PGC-1α and CPT-1 were determined using enzyme-linked immunosorbent assay method (ELISA).Results:Body weight decreased significantly (P <.01),food intake,water intake and urine volume increased significantly (P <.01),and grip strength decreased significantly (P <.01) in the model group compared with the normal group.The levels of FBG,Fins,GHb and HOMA-IR increased significantly (P <.01),and the ISI decreased significantly (P <.01) in the model group.The levels of TG,TC,LDL-C and FFA increased significantly (P <.05 or P <.01),and the level of HDL-C decreased significantly (P <.05) in the model group.These changes were reversed after treatment with YYHQ granule or pioglitazone.Compared with the model group,the YYHQ granule and pioglitazone groups significantly improve body weight,water intake and urine volume (P <.05 or P <.01),however,both treatments had no significant effect on food intake (P >.05).The levels of FBG,Fins,GHb,HOMA-IR and ISI were improved significantly (P <.01) and the levels of TG,TC and LDL-C were improved significantly (P <.05 or P <.01),however,both treatments had no significant effect on the levels of HDL-C and FFA (P >.05).Further results indicated that YYHQ granule significantly decreased the mRNA expression of AMPK,PGC-1α,CPT-1,SIRT1 and SIRT3 in skeletal muscle (P <.01) and the pioglitazone group showed similar effects;moreover,the protein expression levels of CK,Ca2+ATPase,α-Actin,AMPK,PGC-1α and CPT-1 in skeletal muscle significantly decreased (P <.01),however,pioglitazone had no significant effect on CK and α-Actin (P >.05).Conclusion:The possible molecular mechanism of YYHQ granule improving skeletal muscle insulin resistance in a type 2 diabetic rat model may be related to the stimulation of energy metabolism in skeletal muscle via the AMPK/SIRT/PGC-1α signalling pathway.