It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. T...It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li2O to CaO based fluxes was recommended.展开更多
The effects of CaO/Al2O3 ratio on viscosity and structure of the CaO-Al2O3-based fluoride-free mould fluxes were investigated with the CaO/Al2O3 ratio varied from 1 to 4 and the content of SiO2 fixed at 7 wt.%. The in...The effects of CaO/Al2O3 ratio on viscosity and structure of the CaO-Al2O3-based fluoride-free mould fluxes were investigated with the CaO/Al2O3 ratio varied from 1 to 4 and the content of SiO2 fixed at 7 wt.%. The increase in the CaO/Al2O3 ratio from 1 to 2 lowered the viscosity of the flux melts. The viscosity increased slightly with the CaO/Al2O3 ratio from 2 to 3, and this increase became significant with further increasing CaO/Al2O3 ratio to 4. Both break temperature and apparent activation energy were found to be increased with the increase in CaO/Al2O3 ratio from 2 to 4. There was no break temperature available in the flux with CaO/Al2O3 ratio of 1. Changing the CaO/Al2O3 ratio from 1 to 2 decreased the apparent activation energy. Equilibrium phases of the fluxes were calculated using FactSage 7.1 and the major phases were found to be varied with the CaO/Al2O3 ratio. Structures of tested mould fluxes were analysed using Fourier transform infrared spectroscopy. The results showed that the increase in the CaO/Al2O3 ratio from 1 to 2 decreased the complexity of the structure, leading to a reduced viscosity. With the increase in the CaO/Al2O3 ratio from 2 to 4, both solid phase precipitation and melt structure contributed to the variation of viscosity.展开更多
Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety b...Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety but also saves the energy. However, the high-aluminum (Al) content in AHSSs may react with SiO2 in conventional CaO-SiO2-based mold flux during the process of continuous casting, which leads to the deterioration of the mold flux properties and a poor slab quality. Then, the non-reactive CaO-Al2O3-based mold flux was proposed and has been developing for the casting process of high-Al steels, but there are some problems of low consumption and insufficient lubrication that need to be solved. Thus, previous researches on the effect of each component on the properties of CaO-Al2O3-based mold flux were systematically summarized, and the situation of plant trials on CaO-Al2O3-based mold flux was evaluated. The results indicated that the proposed CaO-Al2O3-based mold fluxes could avoid the slag-metal reaction problems;however, the problems of lubri-cation, crystallization and heat transfer issues still exist. Therefore, tremendous works still need to be conducted for the development of new generation of CaO-Al2O3-based mold flux system. The review was performed aiming to provide a technical guidance for designing and optimizing CaO-Al2O3-based mold flux system that meets the demand of the continuous casting process of high-Al steels.展开更多
基金Item Sponsored by National Natural Science Foundation of China(59774015)
文摘It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li2O to CaO based fluxes was recommended.
文摘The effects of CaO/Al2O3 ratio on viscosity and structure of the CaO-Al2O3-based fluoride-free mould fluxes were investigated with the CaO/Al2O3 ratio varied from 1 to 4 and the content of SiO2 fixed at 7 wt.%. The increase in the CaO/Al2O3 ratio from 1 to 2 lowered the viscosity of the flux melts. The viscosity increased slightly with the CaO/Al2O3 ratio from 2 to 3, and this increase became significant with further increasing CaO/Al2O3 ratio to 4. Both break temperature and apparent activation energy were found to be increased with the increase in CaO/Al2O3 ratio from 2 to 4. There was no break temperature available in the flux with CaO/Al2O3 ratio of 1. Changing the CaO/Al2O3 ratio from 1 to 2 decreased the apparent activation energy. Equilibrium phases of the fluxes were calculated using FactSage 7.1 and the major phases were found to be varied with the CaO/Al2O3 ratio. Structures of tested mould fluxes were analysed using Fourier transform infrared spectroscopy. The results showed that the increase in the CaO/Al2O3 ratio from 1 to 2 decreased the complexity of the structure, leading to a reduced viscosity. With the increase in the CaO/Al2O3 ratio from 2 to 4, both solid phase precipitation and melt structure contributed to the variation of viscosity.
基金National Natural Science Foundation of China(U1760202,51661130154)the Newton Advanced fellowship(NA 150320)is greatly acknowledged.
文摘Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety but also saves the energy. However, the high-aluminum (Al) content in AHSSs may react with SiO2 in conventional CaO-SiO2-based mold flux during the process of continuous casting, which leads to the deterioration of the mold flux properties and a poor slab quality. Then, the non-reactive CaO-Al2O3-based mold flux was proposed and has been developing for the casting process of high-Al steels, but there are some problems of low consumption and insufficient lubrication that need to be solved. Thus, previous researches on the effect of each component on the properties of CaO-Al2O3-based mold flux were systematically summarized, and the situation of plant trials on CaO-Al2O3-based mold flux was evaluated. The results indicated that the proposed CaO-Al2O3-based mold fluxes could avoid the slag-metal reaction problems;however, the problems of lubri-cation, crystallization and heat transfer issues still exist. Therefore, tremendous works still need to be conducted for the development of new generation of CaO-Al2O3-based mold flux system. The review was performed aiming to provide a technical guidance for designing and optimizing CaO-Al2O3-based mold flux system that meets the demand of the continuous casting process of high-Al steels.