The effects of the Ca0.7Nd0.2Ti O3 ceramic addition on the crystallization,densification,and dielectric properties of CaO–B2O3–SiO2–(Al2O3)glass(C1:CaO–B2O3–SiO2 glass and C1A03:CaO–B2O3–SiO2–Al2O3 glass)for l...The effects of the Ca0.7Nd0.2Ti O3 ceramic addition on the crystallization,densification,and dielectric properties of CaO–B2O3–SiO2–(Al2O3)glass(C1:CaO–B2O3–SiO2 glass and C1A03:CaO–B2O3–SiO2–Al2O3 glass)for low-temperature co-fired ceramic(LTCC)applications are investigated.The cristobalite phase crystallized from C1 glass was inhibited by adding Al2O3.During sintering,Ca0.7Nd0.2TiO3 ceramic reacted with CaO–B2O3–SiO2–(Al2O3)glass to form the sphene(CaTiSiO5)phase.The amount of sphene phase increases with increasing sintering temperature.By adding 50–60 wt%C1 or C1A03 glass,Ca0.7Nd0.2TiO3 can be densified at 850–900℃.The relative dielectric constants for Ca0.7Nd0.2TiO3 added with C1 and C1A03 glasses were all 20–23.Ca0.7Nd0.2TiO3 added with C1 glass exhibited a lower dielectric constant than C1A03 glass due to cristobalite phase formation.For Ca0.7Nd0.2TiO3 ceramics added with 50 wt%glass,the variation in Q×f value presented the same trend as the sphene formation amount variation.The best Q×f value of 2380 GHz was achieved for Ca0.7Nd0.2TiO3 ceramics added with 50 wt%C1A03 glass sintered at 900℃due to the dense structure and greater amount of sphene.Ca0.7Nd0.2TiO3 ceramics added with50 wt%C1A03 glass sintered at 900℃exhibited a dielectric constant of 22.8 and Q×f value of2380 GHz,which are suitable for microwave LTCC applications.展开更多
基金financially supported by “the Ministry of Science and Technology” (106-2923-E-006-009-MY3)
文摘The effects of the Ca0.7Nd0.2Ti O3 ceramic addition on the crystallization,densification,and dielectric properties of CaO–B2O3–SiO2–(Al2O3)glass(C1:CaO–B2O3–SiO2 glass and C1A03:CaO–B2O3–SiO2–Al2O3 glass)for low-temperature co-fired ceramic(LTCC)applications are investigated.The cristobalite phase crystallized from C1 glass was inhibited by adding Al2O3.During sintering,Ca0.7Nd0.2TiO3 ceramic reacted with CaO–B2O3–SiO2–(Al2O3)glass to form the sphene(CaTiSiO5)phase.The amount of sphene phase increases with increasing sintering temperature.By adding 50–60 wt%C1 or C1A03 glass,Ca0.7Nd0.2TiO3 can be densified at 850–900℃.The relative dielectric constants for Ca0.7Nd0.2TiO3 added with C1 and C1A03 glasses were all 20–23.Ca0.7Nd0.2TiO3 added with C1 glass exhibited a lower dielectric constant than C1A03 glass due to cristobalite phase formation.For Ca0.7Nd0.2TiO3 ceramics added with 50 wt%glass,the variation in Q×f value presented the same trend as the sphene formation amount variation.The best Q×f value of 2380 GHz was achieved for Ca0.7Nd0.2TiO3 ceramics added with 50 wt%C1A03 glass sintered at 900℃due to the dense structure and greater amount of sphene.Ca0.7Nd0.2TiO3 ceramics added with50 wt%C1A03 glass sintered at 900℃exhibited a dielectric constant of 22.8 and Q×f value of2380 GHz,which are suitable for microwave LTCC applications.