The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of...The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of B_(2)O_(3) was comprehensively studied via FTIR spectroscopy and a model for calculating the degree of polymerization was developed.The results showed that the viscosity of the molten slag decreased with the addition of B_(2)O_(3),which had a slight effect when its content exceeded 3 wt.%.As the addition of B_(2)O_(3) increased from 0 to 4 wt.%,the break temperature of the slags decreased from 1152 to 1050℃ and the apparent activation energy decreased from 157.90 to 141.84 kJ/mol.The addition of B_(2)O_(3) to the molten slag destroyed the chain silicate structure to form a more cyclic borosilicate structure.The Urbain model was improved to calculate the viscosity of the SiO_(2)−MgO−FeO-based slags,and the values were in good agreement with the experimentally measured values.展开更多
The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °...The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.展开更多
The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature wer...Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.展开更多
A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activitie...A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activities on the thermodynamic properties of slags.Using this model,iso-activity contours were obtained for oxide components CaO,SiO_(2) and Al2O3 in this system at temperatures of 1,873 K and 1,773 K.When compared with the IMCT model,it is found that the predicted activities of oxide components in the CaO-SiO_(2)-Al_(2)O_(3) system using the model developed in this study better matches experimental data from literature in terms of both trend and numerical value.Therefore,the model developed in this study can serve as a robust modeling tool for metallurgical processes,and the thermodynamic data predicted by this new model can be used to improve the metallurgical technology.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51774224)。
文摘The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of B_(2)O_(3) was comprehensively studied via FTIR spectroscopy and a model for calculating the degree of polymerization was developed.The results showed that the viscosity of the molten slag decreased with the addition of B_(2)O_(3),which had a slight effect when its content exceeded 3 wt.%.As the addition of B_(2)O_(3) increased from 0 to 4 wt.%,the break temperature of the slags decreased from 1152 to 1050℃ and the apparent activation energy decreased from 157.90 to 141.84 kJ/mol.The addition of B_(2)O_(3) to the molten slag destroyed the chain silicate structure to form a more cyclic borosilicate structure.The Urbain model was improved to calculate the viscosity of the SiO_(2)−MgO−FeO-based slags,and the values were in good agreement with the experimentally measured values.
基金Projects(51174054,51104041)supported by the National Natural Science Foundation of China
文摘The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.
文摘Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC 52175352).
文摘A thermochemical model based on the ion and molecule coexistence theory(IMCT)was developed to calculate thermodynamic data in the CaO-SiO_(2)-Al_(2)O_(3) slag system,considering the influential role of oxide activities on the thermodynamic properties of slags.Using this model,iso-activity contours were obtained for oxide components CaO,SiO_(2) and Al2O3 in this system at temperatures of 1,873 K and 1,773 K.When compared with the IMCT model,it is found that the predicted activities of oxide components in the CaO-SiO_(2)-Al_(2)O_(3) system using the model developed in this study better matches experimental data from literature in terms of both trend and numerical value.Therefore,the model developed in this study can serve as a robust modeling tool for metallurgical processes,and the thermodynamic data predicted by this new model can be used to improve the metallurgical technology.