The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop...In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.展开更多
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi...In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.展开更多
In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study ...In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study and a series oflaboratory tests were carried out to explore new stabilizationagents and determine the optimal dosage. Unconfinedcompressive strength (UCS) and the pH value of soil poresolution were measured. The influence of organic content,agent composition and curing time on the UCS of sampleswere also researched. The test results show that the UCS ofstabilized organic soils by a new agent achieves approximately800 and 1 200 kPa at 28 and 90 d curing time, respectively.The pH test results show that a high alkaline environment is anecessary and not a sufficient condition for high strength. Thestrength of stabilized soil is related to the hydration product ofstabilization agent. The mechanism of strength formation wasalso explored by X-ray diffraction (XRD), mercury intrusionporosimetry (MIP) and scanning electron microscope (SEM)tests. A large amount of ettringite is produced to fill the largepores of organic soils, which contribute to the high UCS valueof stabilized organic soils. The new agent can solidify theorganic soil successfully as well as provide a new approach totreat the organic soil.展开更多
To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanis...To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.展开更多
This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansiv...This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansive soil,such as plasticity,shrink-swell behavior,unconfined compressive strength(UCS),mineralogical and microstructural characteristics were investigated.The expansive soil was stabilized at its optimum lime content(7%) for producing maximum strength,and was modified with four different quantities of PM in small dosages(0.25%-2%).Cylindrical soil samples,38 mm in diameter and 76 mm in height,were cast and cured for varying periods to evaluate the strength of the amended soil.The spent samples after strength tests were further used for determination of other properties.The test results revealed that PM modification led to a substantial improvement in 7-d strength and noticeable increase in 28-d strength of the lime-stabilized soil(LSS).The addition of PM does not cause any detrimental changes to the shrink-swell properties as well as plasticity nature of the stabilized soil,despite being a material of organic origin.Mineralogical investigation revealed that the formation of calcium silicate hydrate(CSH) minerals,similar to that of pure lime stabilization with only the type of mineral varying due to the modification of PM addition,does not significantly alter the microstructure of the LSS except for superficial changes being noticed.展开更多
This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized s...This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting o...The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on...This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.展开更多
Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastruc...Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed.展开更多
With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the in...With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan-Golmud Expressway between 7.7°C and 27°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year,respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months;In the range from both sides of the shoulder to the centerline of the roadbed,the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range.展开更多
In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental sch...In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.展开更多
The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four yea...The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.展开更多
Engineers are often faced with the challenge of constructing with or on soils with poor strength that could pose challenges during the construction phase and service life of the facility.For better results,the geotech...Engineers are often faced with the challenge of constructing with or on soils with poor strength that could pose challenges during the construction phase and service life of the facility.For better results,the geotechnical properties of the soil have to be improved.This study focused on the effect of flax fiber on the geotechnical properties of the soil.The soil samples were obtained from borrow pits within the University of Ibadan,Ibadan,Nigeria.The geotechnical properties CBR(California Bearing Ratio)and UCS(Unconfined Compressive Strength)of the natural soils among others were determined in accordance with BS 1377.Flax fibers of 0.3%,0.6%,0.9%,1.2%,and 1.5%by weight were added to the subsoil.The mixtures geotechnical properties were measured.The results showed that the addition of flax fiber led to increase in the soil CBR from 3.1%to 15%and also its UCS witnessed tremendous increase.The soil maximum CBR and UCS were attained at optimum flax fiber content of 1.2%.展开更多
Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to sl...Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to slope stability under dif- ferent slope gradient, an unconsolidated and undrained triaxial compression test was conducted to measure the shear strengths of soil and root-soil composite in the two slopes in eastern Qinghai Province. In addition, under the protection of plant roots, the effect of gradient on stability of soil slope was investigated by limit equilibrium method. The results showed that the stability coefficient of soil slope planted with two kinds of brush was decreased with the increase in slope gradient, and the sta- bility coefficient increment of soil slope containing Atriplex canescens roots was higher than that containing Caragana korshinskii roots. When the slope gradient ranged from 25° to 50°, the stability coefficient of soil slope planted with Atriplex canescens or Caragana korshinskii ranged from 0.80 to 1.38. However, when the slope gradient exceeded 55°, the increment of stability coefficient of soil slope became small.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金This study was supported by MatSoil Company(Grant No.04G/2022)This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie(Grant No.778120).
文摘In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.
基金Project(51008007)supported by the National Natural Science Foundation of ChinaProject(2013318J01100)supported by the Science and Technology Project of Ministry of Communications,China
文摘In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.
基金The National Natural Science Foundation of Chin(No.51578148)the Project of China Communications Construction(No.2015-ZJKJ-26)the Fundamental Research Funds for the Centra Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.SJLX15_0062)
文摘In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study and a series oflaboratory tests were carried out to explore new stabilizationagents and determine the optimal dosage. Unconfinedcompressive strength (UCS) and the pH value of soil poresolution were measured. The influence of organic content,agent composition and curing time on the UCS of sampleswere also researched. The test results show that the UCS ofstabilized organic soils by a new agent achieves approximately800 and 1 200 kPa at 28 and 90 d curing time, respectively.The pH test results show that a high alkaline environment is anecessary and not a sufficient condition for high strength. Thestrength of stabilized soil is related to the hydration product ofstabilization agent. The mechanism of strength formation wasalso explored by X-ray diffraction (XRD), mercury intrusionporosimetry (MIP) and scanning electron microscope (SEM)tests. A large amount of ettringite is produced to fill the largepores of organic soils, which contribute to the high UCS valueof stabilized organic soils. The new agent can solidify theorganic soil successfully as well as provide a new approach totreat the organic soil.
文摘To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.
文摘This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansive soil,such as plasticity,shrink-swell behavior,unconfined compressive strength(UCS),mineralogical and microstructural characteristics were investigated.The expansive soil was stabilized at its optimum lime content(7%) for producing maximum strength,and was modified with four different quantities of PM in small dosages(0.25%-2%).Cylindrical soil samples,38 mm in diameter and 76 mm in height,were cast and cured for varying periods to evaluate the strength of the amended soil.The spent samples after strength tests were further used for determination of other properties.The test results revealed that PM modification led to a substantial improvement in 7-d strength and noticeable increase in 28-d strength of the lime-stabilized soil(LSS).The addition of PM does not cause any detrimental changes to the shrink-swell properties as well as plasticity nature of the stabilized soil,despite being a material of organic origin.Mineralogical investigation revealed that the formation of calcium silicate hydrate(CSH) minerals,similar to that of pure lime stabilization with only the type of mineral varying due to the modification of PM addition,does not significantly alter the microstructure of the LSS except for superficial changes being noticed.
基金the China Postdoctoral Science Foundation(Grant Nos.2016M600396 and 2017T100355)the Fundamental Research Funds for the Central Universities of China(Grant No.B200204001)Jiangsu Natural Resources Science and Technology Fund(Grant No.KJXM2019025)are also acknowledged.
文摘This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
文摘The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金supported by an Australian Government Research Training Program(RTP)scholarship.
文摘This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms.
基金financial support of this research from Damascus University
文摘Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed.
基金supported by a grant from the Gansu Provincial Department of Natural Resources Science and Technology Innovation Talent Cultivation Project (2022-09)the geological disaster prevention projects of Gansu Provincial Bureau of Geology and Mineral Resources(2022-09)Natural Science Foundation of Gansu province(No.22JR5RA326)。
文摘With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan-Golmud Expressway between 7.7°C and 27°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year,respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months;In the range from both sides of the shoulder to the centerline of the roadbed,the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.
文摘The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.
文摘Engineers are often faced with the challenge of constructing with or on soils with poor strength that could pose challenges during the construction phase and service life of the facility.For better results,the geotechnical properties of the soil have to be improved.This study focused on the effect of flax fiber on the geotechnical properties of the soil.The soil samples were obtained from borrow pits within the University of Ibadan,Ibadan,Nigeria.The geotechnical properties CBR(California Bearing Ratio)and UCS(Unconfined Compressive Strength)of the natural soils among others were determined in accordance with BS 1377.Flax fibers of 0.3%,0.6%,0.9%,1.2%,and 1.5%by weight were added to the subsoil.The mixtures geotechnical properties were measured.The results showed that the addition of flax fiber led to increase in the soil CBR from 3.1%to 15%and also its UCS witnessed tremendous increase.The soil maximum CBR and UCS were attained at optimum flax fiber content of 1.2%.
基金Supported by Scientific Research Fund for Middle-aged and Young Scientists of Qinghai University(2012-QGY-5)"123 High-level Personnel Training Project"of Qinghai UniversityProject of Geological Resources and Geological Engineering Innovation Team of Qinghai University(4056051201)~~
文摘Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to slope stability under dif- ferent slope gradient, an unconsolidated and undrained triaxial compression test was conducted to measure the shear strengths of soil and root-soil composite in the two slopes in eastern Qinghai Province. In addition, under the protection of plant roots, the effect of gradient on stability of soil slope was investigated by limit equilibrium method. The results showed that the stability coefficient of soil slope planted with two kinds of brush was decreased with the increase in slope gradient, and the sta- bility coefficient increment of soil slope containing Atriplex canescens roots was higher than that containing Caragana korshinskii roots. When the slope gradient ranged from 25° to 50°, the stability coefficient of soil slope planted with Atriplex canescens or Caragana korshinskii ranged from 0.80 to 1.38. However, when the slope gradient exceeded 55°, the increment of stability coefficient of soil slope became small.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.