To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green ...To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively.展开更多
The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °...The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.展开更多
The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
基金This work was supported by the National Natural Science Foundation of China(5180021223)Henan Provice Science&Technology Programs(232102231046 and 232102231051)Cultivation Programme for Yong Backbone Teachers in Henan University to Technology(2142121).
文摘To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively.
基金Projects(51174054,51104041)supported by the National Natural Science Foundation of China
文摘The formation characteristics of calcium aluminates in the CaO-Al2O3-SiO2 system with sodium oxide was investigated by XRD, SEM-EDS and DSC-TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO?7Al2O3, 2CaO?Al2O3?SiO2 and 2CaO?SiO2 when the mass ratio of Al2O3 to SiO2 is 3.0 and the molar ratio of CaO to Al2O3 is 1.0. The proportion of 12CaO?7Al2O3 increases with the increase of Na2O addition when the molar ratio of Na2O to Al2O3 is from 0 to 0.4, while the proportion of 2CaO?Al2O3?SiO2 decreases with the increase of Na2O addition. Na2O forms solid solution in 12CaO?7Al2O3, which increases the volume of elementary cell of 12CaO?7Al2O3. The formation temperature of 12CaO?7Al2O3 is decreased by 30 °C when the molar ratio of Na2O to Al2O3 increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na2O addition.
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.