CaSiO3:Eu0.08^3+Bi0.002^3+ with a monoclinic perovskite structure was synthesized by using sol-gel method, and its luminescence characteristics were investigated. From the excitation spectrum, it can be seen that t...CaSiO3:Eu0.08^3+Bi0.002^3+ with a monoclinic perovskite structure was synthesized by using sol-gel method, and its luminescence characteristics were investigated. From the excitation spectrum, it can be seen that the main peaks located at 238,396,415,437 and 359 nm correspond to the charge-transfer band of Eu^3+-O^2- , the absorption transitions of ^7F0.1→^3L6, ^7F0→^5D3, ^7F1→^5D3 of Eu^3+ ions, and ^3P1→^1S0 of Bi^3+ ions, respectively. When the samples were excited with a light of wavelength 359 or 395 nm, it can be seen from the emission spectrum that the electronic dipole transition located at 609 nm corresponding to ^5D0→^7F2 of Eu^3+ ions was stronger than the magnetic dipole transition located at 587 nm corresponding to ^5D0→^7F1 of Eu^3+ ions, which shows that more Eu^3+ ions were located in nonreversion center lattices. The energy transfer from Bi^3+ ions to Eu^3+ ions in the phosphor was also discussed. The results show that Eu^3+ ions could be well sensitized by ^3+ions, and the energy-transfer pattern between Bi^3+ ions and Eu^3+ ions was resonance energy transfer.展开更多
基金Supported by the State Key Basic Research Program of China(No. 2003CD314702-02) Education Bureau of Jilin Province(No. 200318).
文摘CaSiO3:Eu0.08^3+Bi0.002^3+ with a monoclinic perovskite structure was synthesized by using sol-gel method, and its luminescence characteristics were investigated. From the excitation spectrum, it can be seen that the main peaks located at 238,396,415,437 and 359 nm correspond to the charge-transfer band of Eu^3+-O^2- , the absorption transitions of ^7F0.1→^3L6, ^7F0→^5D3, ^7F1→^5D3 of Eu^3+ ions, and ^3P1→^1S0 of Bi^3+ ions, respectively. When the samples were excited with a light of wavelength 359 or 395 nm, it can be seen from the emission spectrum that the electronic dipole transition located at 609 nm corresponding to ^5D0→^7F2 of Eu^3+ ions was stronger than the magnetic dipole transition located at 587 nm corresponding to ^5D0→^7F1 of Eu^3+ ions, which shows that more Eu^3+ ions were located in nonreversion center lattices. The energy transfer from Bi^3+ ions to Eu^3+ ions in the phosphor was also discussed. The results show that Eu^3+ ions could be well sensitized by ^3+ions, and the energy-transfer pattern between Bi^3+ ions and Eu^3+ ions was resonance energy transfer.