The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections ...The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10947013)the Fundamental Research Funds for the Central Universities (Grant No.XDJK2010B007)the SWU Initial Research Foundation Grant to Doctor (Grant No.SWU109011)
文摘The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.