Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge st...In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges.展开更多
In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theo...In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.展开更多
A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength...A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength model and the reliability assessment technique for long-span cable-stayed bridges based on the safety factors analysis of stay cables in service. As an application of the proposed model, the cable safety reliability of the cable No. 25 of Zhaobaoshan cable-stayed bridge in China is calculated. The effects of various parameters on the estimated cable safety reliability are investigated. The results indicate that the proposed method can be used to assess the safety level of stay cables in cable-stayed bridges effectively. The Daniels' effect should be taken into account for assessment, and the probability of broken wires can be used to simulate the deterioration of stay cables in service.展开更多
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the resp...The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.展开更多
Digital cable-stayed bridge maintenance and management system (DCBMS) was developed for the need of maintenance and management of long-span cable-stayed bridges. In this paper, the major functions and theoretical ap...Digital cable-stayed bridge maintenance and management system (DCBMS) was developed for the need of maintenance and management of long-span cable-stayed bridges. In this paper, the major functions and theoretical application of eight modules were systematically stated with the background of Harbin Songhua River cable-stayed bridge, which include data management module, inspection and measurement module, assessment module, finite dement analysis module, disease diagnosis and prediction module, maintenance module, query module and help module. By analyzing and calculating the data from manual inspection database, basic database and health monitoring subsystem, DCBMS can accomplish the functions like life prediction, disease diagnosis, comprehensive assessment, maintenance and management of bridges. Therefore, the maintenance and management of long-span cable-stayed bridges can be made digital, professional and scientific. By running this system, a real-time and specific technical guidance can be provided for the maintainers and managers of long- span cable-stayed bridges.展开更多
Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span...Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span cable-stayed bridges.According to the approach,the seismic performance evaluation of the Sutong Bridge,which is a cable-stayed bridge with a main span of 1 088 m,is completed,and the practicality of the approach is validated.The earthquake resistance level for super-long span cable-stayed bridges is discussed,including the earthquake level,its corresponding structural performance and check indices.And a set of formula for capacity/demand ratio calculation of bridge components is proposed.展开更多
The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the ana...The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations.展开更多
In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasibl...In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasible zone method,emphasizing on the mutual effect between the self-anchored structural parts and the earth-anchored ones. Three cable-stayed bridge models are designed with the main spans of 1 400 m,including a partially earth-anchored cable-stayed bridge,a cable-stayed-suspension bridge and a fully selfanchored cable-stayed bridge,in which the C50 concrete and Q345 steel are adopted. The partially earthanchored cable-stayed bridge and the cable-stayed-suspension bridge secure lower compressive force in the girder than the fully self-anchored cable-stayed bridge by 25 percent at least. The same is for the material consumption of the whole bridge. Furthermore,the anchor volume is more than 20% lower in the partially earthanchored cable-stayed bridge than that in the cable-stayed-suspension bridge. Consequently,the practical span of cable-stayed bridges can be accordingly extended.展开更多
With the increase of span length, the bridge tends to be more flexible, and the wind stability be- comes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super ...With the increase of span length, the bridge tends to be more flexible, and the wind stability be- comes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super long-span cable-stayed bridge with a main span of 1 400 m as example, the aerostatic and aerodynamic stability of the bridge are investigated by three-dimensional nonlinear aerostatic and aerodynamic stability analy- sis, and the results are compared with those of a suspension bridge with a main span of 1 385 m, and from the aspect of wind stability, the feasibility of using cable-stayed bridge in super long-span bridge with a main span above l 000 m is discussed. In addition, the influences of design parameters including the depth and width of the girder, the tower structure, the tower height-to-span ratio, the side-to-main span ratio, the auxiliary piers in the side span and the anchorage system of stay cables, etc on the aerostatic and aerodynamic stability of su- per long-span cable-stayed bridges are investigated numerically; the key design parameters are pointed out, and also their reasonable values are proposed.展开更多
The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand ...The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lateral static wind load will generate additional displacement of long cables,which causes the decrease of supporting rigidity of the whole bridge and the change of dynamic properties. Wind load,being the controlling load in the design of cable-stayed bridge,is a critical problem and needs to be solved. Meanwhile,research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thousand meters,identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore,vortex induced vibration and Reynolds number effect are detailed discussed.展开更多
The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This...The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This work focuses on developing a simplified method to design an appropriate metallic damper.The seismic performance of cablestayed bridges with different damper stiffness,main span lengths,tower shapes and types of deck in the transverse direction are investigated.The transverse displacement of the deck of a cable-stayed bridge increases significantly with the increment of the damper stiffness,which proves that the design of the damper stiffness is crucial.A simplified model considering the damper stiffness,cable system and tower in the transverse direction is developed to evaluate the period and lateral displacement of a complicated cable-stayed bridge.Based on the simplified model,a design method is proposed and assessed using two cable-stayed bridges as examples.The results show that metallic dampers can be designed with high efficiency,and the optimal ductility of the damper can be selected.展开更多
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me...Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.展开更多
In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability w...In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.展开更多
As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years...As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations.展开更多
This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the...This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.展开更多
Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of s...Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of sampling points on the precision of cable force identification are discussed, and error analysis is conducted. The results of three methods applied to a practical project are significantly less than the design value. Comparatively, the result of finite element method is the closest to the design value. Moreover, their computational precision and error are compared and analyzed. The precision of frequency identification of cables, long cables in particular, is strongly affected by frequency resolution. If the frequency resolution is included in calculating the cable force, the identification error can be reduced greatly.展开更多
Cable-stayed bridge is a high-order hyperstatic structure. The size of cable force affects the stress of the structure greatly. The key problem to determine the rational completion status of cable-stayed bridges is ho...Cable-stayed bridge is a high-order hyperstatic structure. The size of cable force affects the stress of the structure greatly. The key problem to determine the rational completion status of cable-stayed bridges is how to control cable force on completion status. Surrounding this problem, domestic and foreign experts and scholars have done a lot of favorable work and obtained much achievement. On the basis of comprehensive reading domestic and foreign relative documentation, the author of this article classifies rationally the current researching achievement, comments and compares advantages and disadvantages of each method and lists two synthetic methods’ detail steps and puts forward the researching emphasis of the field will deflect to synthesis several methods to determine the rational completion status of cable-stayed bridges.展开更多
Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with r...Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with repetitive and computationally intensive nonlinear time-history analyses(NTHAs)are generally required in conventional design methods.To streamline the preliminary design process,this paper developed a simplified longitudinal double degree of freedom model(DDFM)for single and symmetric twin-tower cable-stayed bridges.Based on the proposed simplified longitudinal DDFM,the analytical equations for the relevant mass-and stiffness-related parameters and longitudinal natural frequencies of the structure were derived by using analytical and energy methods.Modeling of the relationship between the nonlinear viscous damper parameters and the equivalent damping ratio was achieved through the equivalent linearization method.Additionally,the analytical equations of longitudinal seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers were derived.Based on the developed simplified DDFM and suggested analytical equations,this paper proposed a simplified calculation framework to achieve a simplified design method of nonlinear viscous damper parameters.Moreover,the effectiveness and applicability of the developed simplified longitudinal DDFM and the proposed calculation framework were further validated through numerical analysis of a practical cable-stayed bridge.Finally,the results indicated the following.1)For the obtained fundamental period and longitudinal stiffness,the differences between results of the simplified longitudinal DDFM and numerical analysis were only 2.05%and 1.5%,respectively.2)Relative calculation errors of the longitudinal girder-end displacement and bending moment of the bottom tower section of the bridge obtained from the simplified longitudinal DDFM were limited to less than 25%.3)The equivalent damping ratio of nonlinear viscous dampers and the applied loading frequency had significant effects on the longitudinal seismic responses of the bridge.Findings of this study may provide beneficial information for a design office to make a simplified preliminary design scheme to determine the appropriate nonlinear damper parameters and longitudinal seismic responses for long-span cable-stayed bridges.展开更多
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金We would like to express our deep gratitude to the 2021 Liaoning Province Doctoral Research Start-Up Fund Project(2021-BS-168)for financial support.
文摘In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges.
基金Specialized Research Fund for the Doctoral Programof Higher Education (No20050213008)the Scientific and TechnicalPlan Item of Communications Department of Heilongjiang Province ofChina (2004)
文摘In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.
基金The Opening Fund of the Key Laboratory of UrbanSecurity and Disaster Engineering of Ministry of Education (NoEESR200701)the Opening Fund of Beijing Laboratory of EarthquakeEngineering and Structural Retrofit
文摘A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength model and the reliability assessment technique for long-span cable-stayed bridges based on the safety factors analysis of stay cables in service. As an application of the proposed model, the cable safety reliability of the cable No. 25 of Zhaobaoshan cable-stayed bridge in China is calculated. The effects of various parameters on the estimated cable safety reliability are investigated. The results indicate that the proposed method can be used to assess the safety level of stay cables in cable-stayed bridges effectively. The Daniels' effect should be taken into account for assessment, and the probability of broken wires can be used to simulate the deterioration of stay cables in service.
基金Natural Science and Engineering Research Council of Canada
文摘The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.
基金Sponsored by the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20050213008)Scientific and Technical Plan Item of Communications Department of Heilongjiang Province of China(Grant No.2004).
文摘Digital cable-stayed bridge maintenance and management system (DCBMS) was developed for the need of maintenance and management of long-span cable-stayed bridges. In this paper, the major functions and theoretical application of eight modules were systematically stated with the background of Harbin Songhua River cable-stayed bridge, which include data management module, inspection and measurement module, assessment module, finite dement analysis module, disease diagnosis and prediction module, maintenance module, query module and help module. By analyzing and calculating the data from manual inspection database, basic database and health monitoring subsystem, DCBMS can accomplish the functions like life prediction, disease diagnosis, comprehensive assessment, maintenance and management of bridges. Therefore, the maintenance and management of long-span cable-stayed bridges can be made digital, professional and scientific. By running this system, a real-time and specific technical guidance can be provided for the maintainers and managers of long- span cable-stayed bridges.
基金National Key Technologies R&D Program(No.2006BAG04B01),research on technical standards,key structures and their characteristics of kilometer-magnitude cable-stayed bridges
文摘Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span cable-stayed bridges.According to the approach,the seismic performance evaluation of the Sutong Bridge,which is a cable-stayed bridge with a main span of 1 088 m,is completed,and the practicality of the approach is validated.The earthquake resistance level for super-long span cable-stayed bridges is discussed,including the earthquake level,its corresponding structural performance and check indices.And a set of formula for capacity/demand ratio calculation of bridge components is proposed.
基金Alexander von Humboldt Fellowship-AvH (IV–AGY/1117497 STP)Japan Society for the Promotion of Science-JSPS Fellowship (P06138)
文摘The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations.
基金Sponsored by the National Basic Research Program of China(Grant No.2013CB036303)the National Natural Science Foundation of China(Grant No.51008223)
文摘In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasible zone method,emphasizing on the mutual effect between the self-anchored structural parts and the earth-anchored ones. Three cable-stayed bridge models are designed with the main spans of 1 400 m,including a partially earth-anchored cable-stayed bridge,a cable-stayed-suspension bridge and a fully selfanchored cable-stayed bridge,in which the C50 concrete and Q345 steel are adopted. The partially earthanchored cable-stayed bridge and the cable-stayed-suspension bridge secure lower compressive force in the girder than the fully self-anchored cable-stayed bridge by 25 percent at least. The same is for the material consumption of the whole bridge. Furthermore,the anchor volume is more than 20% lower in the partially earthanchored cable-stayed bridge than that in the cable-stayed-suspension bridge. Consequently,the practical span of cable-stayed bridges can be accordingly extended.
文摘With the increase of span length, the bridge tends to be more flexible, and the wind stability be- comes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super long-span cable-stayed bridge with a main span of 1 400 m as example, the aerostatic and aerodynamic stability of the bridge are investigated by three-dimensional nonlinear aerostatic and aerodynamic stability analy- sis, and the results are compared with those of a suspension bridge with a main span of 1 385 m, and from the aspect of wind stability, the feasibility of using cable-stayed bridge in super long-span bridge with a main span above l 000 m is discussed. In addition, the influences of design parameters including the depth and width of the girder, the tower structure, the tower height-to-span ratio, the side-to-main span ratio, the auxiliary piers in the side span and the anchorage system of stay cables, etc on the aerostatic and aerodynamic stability of su- per long-span cable-stayed bridges are investigated numerically; the key design parameters are pointed out, and also their reasonable values are proposed.
文摘The elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all,geometric nonlinear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lateral static wind load will generate additional displacement of long cables,which causes the decrease of supporting rigidity of the whole bridge and the change of dynamic properties. Wind load,being the controlling load in the design of cable-stayed bridge,is a critical problem and needs to be solved. Meanwhile,research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thousand meters,identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore,vortex induced vibration and Reynolds number effect are detailed discussed.
基金National Key Research and Development Program of China under Grant No.2011CB013606The financial support from the National Natural Science Foundation of China under Grant No.51378343。
文摘The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This work focuses on developing a simplified method to design an appropriate metallic damper.The seismic performance of cablestayed bridges with different damper stiffness,main span lengths,tower shapes and types of deck in the transverse direction are investigated.The transverse displacement of the deck of a cable-stayed bridge increases significantly with the increment of the damper stiffness,which proves that the design of the damper stiffness is crucial.A simplified model considering the damper stiffness,cable system and tower in the transverse direction is developed to evaluate the period and lateral displacement of a complicated cable-stayed bridge.Based on the simplified model,a design method is proposed and assessed using two cable-stayed bridges as examples.The results show that metallic dampers can be designed with high efficiency,and the optimal ductility of the damper can be selected.
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.
基金supported by the Key Project of Science and Technology R&DProgram of CHINA RAILWAY(AJZH2020-001)and Science and Technology Program Project of Shudao Investment Group(SRIG2020GG0001).On behalf of all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.
基金Project supported by China Postdoctoral Science Foundation (No.2002031245) and the Natural Science Foundation of Zhejiang Prov-ince (No. 502118) China
文摘In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.
基金National Key Research and Development Plan,China under Grant No.2017YFC1500702the National Natural Science Foundation of China under Grant No.51478338。
文摘As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations.
文摘This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.
基金The National Natural Science Foundation ofChina (No.90715036)
文摘Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of sampling points on the precision of cable force identification are discussed, and error analysis is conducted. The results of three methods applied to a practical project are significantly less than the design value. Comparatively, the result of finite element method is the closest to the design value. Moreover, their computational precision and error are compared and analyzed. The precision of frequency identification of cables, long cables in particular, is strongly affected by frequency resolution. If the frequency resolution is included in calculating the cable force, the identification error can be reduced greatly.
文摘Cable-stayed bridge is a high-order hyperstatic structure. The size of cable force affects the stress of the structure greatly. The key problem to determine the rational completion status of cable-stayed bridges is how to control cable force on completion status. Surrounding this problem, domestic and foreign experts and scholars have done a lot of favorable work and obtained much achievement. On the basis of comprehensive reading domestic and foreign relative documentation, the author of this article classifies rationally the current researching achievement, comments and compares advantages and disadvantages of each method and lists two synthetic methods’ detail steps and puts forward the researching emphasis of the field will deflect to synthesis several methods to determine the rational completion status of cable-stayed bridges.
基金supported by the National Natural Science Foundation of China(Grant Nos.51978257 and 52278176)。
文摘Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations.However,complicated finite element(FE)modeling,together with repetitive and computationally intensive nonlinear time-history analyses(NTHAs)are generally required in conventional design methods.To streamline the preliminary design process,this paper developed a simplified longitudinal double degree of freedom model(DDFM)for single and symmetric twin-tower cable-stayed bridges.Based on the proposed simplified longitudinal DDFM,the analytical equations for the relevant mass-and stiffness-related parameters and longitudinal natural frequencies of the structure were derived by using analytical and energy methods.Modeling of the relationship between the nonlinear viscous damper parameters and the equivalent damping ratio was achieved through the equivalent linearization method.Additionally,the analytical equations of longitudinal seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers were derived.Based on the developed simplified DDFM and suggested analytical equations,this paper proposed a simplified calculation framework to achieve a simplified design method of nonlinear viscous damper parameters.Moreover,the effectiveness and applicability of the developed simplified longitudinal DDFM and the proposed calculation framework were further validated through numerical analysis of a practical cable-stayed bridge.Finally,the results indicated the following.1)For the obtained fundamental period and longitudinal stiffness,the differences between results of the simplified longitudinal DDFM and numerical analysis were only 2.05%and 1.5%,respectively.2)Relative calculation errors of the longitudinal girder-end displacement and bending moment of the bottom tower section of the bridge obtained from the simplified longitudinal DDFM were limited to less than 25%.3)The equivalent damping ratio of nonlinear viscous dampers and the applied loading frequency had significant effects on the longitudinal seismic responses of the bridge.Findings of this study may provide beneficial information for a design office to make a simplified preliminary design scheme to determine the appropriate nonlinear damper parameters and longitudinal seismic responses for long-span cable-stayed bridges.