The phenomenon of data explosion represents a severe challenge for the upcoming big data era.However,the current Internet architecture is insufficient for dealing with a huge amount of traffic owing to an increase in ...The phenomenon of data explosion represents a severe challenge for the upcoming big data era.However,the current Internet architecture is insufficient for dealing with a huge amount of traffic owing to an increase in redundant content transmission and the end-point-based communication model.Information-centric networking(ICN)is a paradigm for the future Internet that can be utilized to resolve the data explosion problem.In this paper,we focus on content-centric networking(CCN),one of the key candidate ICN architectures.CCN has been studied in various network environments with the aim of relieving network and server burden,especially in name-based forwarding and in-network caching functionalities.This paper studies the effect of several caching strategies in the CCN domain from the perspective of network and server overhead.Thus,we comprehensively analyze the in-network caching performance of CCN under several popular cache replication methods(i.e.,cache placement).We evaluate the performance with respect to wellknown Internet traffic patterns that follow certain probabilistic distributions,such as the Zipf/Mandelbrot–Zipf distributions,and flashcrowds.For the experiments,we developed an OPNET-based CCN simulator with a realistic Internet-like topology.展开更多
Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking ...Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.展开更多
This paper proposes a complementary novel idea, called MiniTasking to further reduce the number of cache misses by improving the data temporal locality for multiple concurrent queries. Our idea is based on the observa...This paper proposes a complementary novel idea, called MiniTasking to further reduce the number of cache misses by improving the data temporal locality for multiple concurrent queries. Our idea is based on the observation that, in many workloads such as decision support systems (DSS), there is usually significant amount of data sharing among different concurrent queries. MiniTasking exploits such data sharing to improve data temporal locality by scheduling query execution at three levels: query level batching, operator level grouping and mini-task level scheduling. The experimental results with various types of concurrent TPC-H query workloads show that, with the traditional N-ary Storage Model (NSM) layout, MiniTasking significantly reduces the L2 cache misses by up to 83%, and thereby achieves 24% reduction in execution time. With the Partition Attributes Across (PAX) layout, MiniTasking further reduces the cache misses by 65% and the execution time by 9%. For the TPC-H throughput test workload, MiniTasking improves the end performance up to 20%.展开更多
To improve data cache performance, optimizing program data layout by data reorganization has become an important method of decreasing the impact of increasing gap of speed between processor and memory. In this article...To improve data cache performance, optimizing program data layout by data reorganization has become an important method of decreasing the impact of increasing gap of speed between processor and memory. In this article, a structure splitting framework with an analysis model named structure field relation graph (SFRG) is presented to optimize program data layout. The SFRG can be used to quantify relationship between fields. It helps to find an optimal layout for structure as well as the optimal program data layout. And the data cache performance is improved through SFRG-based structure splitting. Experiments show that this framework is effective in optimizing program data layout and improving the performance of data cache and whole program.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2014R1A1A2057796)and(2015R1D1A1A01059049)
文摘The phenomenon of data explosion represents a severe challenge for the upcoming big data era.However,the current Internet architecture is insufficient for dealing with a huge amount of traffic owing to an increase in redundant content transmission and the end-point-based communication model.Information-centric networking(ICN)is a paradigm for the future Internet that can be utilized to resolve the data explosion problem.In this paper,we focus on content-centric networking(CCN),one of the key candidate ICN architectures.CCN has been studied in various network environments with the aim of relieving network and server burden,especially in name-based forwarding and in-network caching functionalities.This paper studies the effect of several caching strategies in the CCN domain from the perspective of network and server overhead.Thus,we comprehensively analyze the in-network caching performance of CCN under several popular cache replication methods(i.e.,cache placement).We evaluate the performance with respect to wellknown Internet traffic patterns that follow certain probabilistic distributions,such as the Zipf/Mandelbrot–Zipf distributions,and flashcrowds.For the experiments,we developed an OPNET-based CCN simulator with a realistic Internet-like topology.
基金supported in part by the 973 Program under Grant No.2013CB329100in part by NSFC under Grant No.61422101,62171200,and 62132017+1 种基金in part by the Ph.D. Programs Foundation of MOE of China under Grant No.20130009110014in part by the Fundamental Research Funds for the Central Universities under Grant No.2016JBZ002
文摘Content-Centric Networking is a novel future network architecture that attracts increasing research interests in recent years. In-network caching has been regarded as a prominent feature of Content-Centric Networking since it is able to reduce the network traffic, alleviate the server bottleneck and decrease the user access latency. However, the CCN default caching scheme results in a high caching redundancy, causing an urgent need for an efficient caching scheme. To address this issue, we propose a novel implicit cooperative caching scheme to efficiently reduce the caching redundancy and improve the cache resources utilization. The simulation results show that our design achieves a higher hit ratio and a shorter cache hit distance in comparison with the other typical caching schemes.
文摘This paper proposes a complementary novel idea, called MiniTasking to further reduce the number of cache misses by improving the data temporal locality for multiple concurrent queries. Our idea is based on the observation that, in many workloads such as decision support systems (DSS), there is usually significant amount of data sharing among different concurrent queries. MiniTasking exploits such data sharing to improve data temporal locality by scheduling query execution at three levels: query level batching, operator level grouping and mini-task level scheduling. The experimental results with various types of concurrent TPC-H query workloads show that, with the traditional N-ary Storage Model (NSM) layout, MiniTasking significantly reduces the L2 cache misses by up to 83%, and thereby achieves 24% reduction in execution time. With the Partition Attributes Across (PAX) layout, MiniTasking further reduces the cache misses by 65% and the execution time by 9%. For the TPC-H throughput test workload, MiniTasking improves the end performance up to 20%.
基金supported by the National Natural Science Foundation of China (60973139, 60773041)the Hi-Tech Research and Development Program of China (2007AA01Z404, 2007AA01Z478)+1 种基金the Technology Innovation Fund for Higher Education Institutions of Jiangsu Province (CX08B-085Z, CX08B-086Z)project of NJUPT(NY207135)
文摘To improve data cache performance, optimizing program data layout by data reorganization has become an important method of decreasing the impact of increasing gap of speed between processor and memory. In this article, a structure splitting framework with an analysis model named structure field relation graph (SFRG) is presented to optimize program data layout. The SFRG can be used to quantify relationship between fields. It helps to find an optimal layout for structure as well as the optimal program data layout. And the data cache performance is improved through SFRG-based structure splitting. Experiments show that this framework is effective in optimizing program data layout and improving the performance of data cache and whole program.