A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedd...We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.展开更多
High performance Dynamic Light Scattering (DLS) has been used to determine the hydrodynamic di-ameters of CdSe nanocrystals as well as CdSe cluster molecules in a size range of 1 to 10 nm (Eichh鰂er et al., 2001). The...High performance Dynamic Light Scattering (DLS) has been used to determine the hydrodynamic di-ameters of CdSe nanocrystals as well as CdSe cluster molecules in a size range of 1 to 10 nm (Eichh鰂er et al., 2001). The method enables the determination of their particle size, including their ligand shells, in solution. The results are consistent with the blue shift of the absorption bands, as well as Transmission Electron Microscope (TEM) experiments. The sizes of the cluster molecules were estimated from space filling models constructed from the results of a single crystal X-ray structure determination. DLS gave comparable results for the size of both types of compound, indicating that it is potentially an important additional measurement technique to TEM, which uses harsh measurement conditions, and to powder X-ray diffraction, which is difficult to interpret below 5 nm.展开更多
Cadmium selenide(CdSe)belongs to the binary II-VI group semiconductor with a direct bandgap of~1.7 eV.The suitable bandgap,high stability,and low manufacturing cost make CdSe an extraordinary candidate as the top cell...Cadmium selenide(CdSe)belongs to the binary II-VI group semiconductor with a direct bandgap of~1.7 eV.The suitable bandgap,high stability,and low manufacturing cost make CdSe an extraordinary candidate as the top cell material in silicon-based tandem solar cells.However,only a few studies have focused on CdSe thin-film solar cells in the past decades.With the advantages of a high deposition rate(~2µm/min)and high uniformity,rapid thermal evaporation(RTE)was used to maximize the use efficiency of CdSe source material.A stable and pure hexagonal phase CdSe thin film with a large grain size was achieved.The CdSe film demonstrated a 1.72 eV bandgap,narrow photoluminescence peak,and fast photoresponse.With the optimal device structure and film thickness,we finally achieved a preliminary efficiency of 1.88%for CdSe thin-film solar cells,suggesting the applicability of CdSe thin-film solar cells.展开更多
We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to ...We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6—10.展开更多
The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”typ...The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.展开更多
The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier fo...The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.展开更多
Little is known about how to precisely promote the selective production of either colloidal semiconductor metal chalcogenide(ME),magic-size clusters(MSCs),or quantum dots(QDs).Recently,a two-pathway model has been pro...Little is known about how to precisely promote the selective production of either colloidal semiconductor metal chalcogenide(ME),magic-size clusters(MSCs),or quantum dots(QDs).Recently,a two-pathway model has been proposed to comprehend their evolution;here,we reveal for the first time that the size of precursors plays a decisive role in the selected evolution pathway of MSCs and QDs.With the reaction of cadmium myristate(Cd(MA)2)and tri-n-octylphosphine selenide(SeTOP)in 1-octadecene(ODE)as a model system,the size of Cd precursors was manipulated by the steric hindrance of carboxylic acid(RCOOH)additive.Without RCOOH,the reaction produced both CdSe MSCs and QDs(from 100 to 240℃).With RCOOH,the reaction produced MSCs or QDs when R was small(such as CH3−)or large(such as C6H5−),respectively.According to the twopathway model,the selective evolution is attributed to the promotion and suppression of the self-assembly of Cd and Se precursors,respectively.We propose that the addition of carboxylic acid may occur ligand exchange with Cd(MA)2,causing the different sizes of Cd precursor.The results suggest that the size of Cd precursors regulates the self-assemble behavior of the precursors,which dictates the directed evolution of either MSCs or QDs.The present findings bring insights into the two-pathway model,as the size of M and E precursors determine the evolution pathways of MSCs or QDs,the understanding of which is of great fundamental significance toward mechanism-enabled design and predictive synthesis of functional nanomaterials.展开更多
Little is known about the synthesis of colloidal ternary semiconductor magic-size clusters(MSCs)and quantum dots(QDs)in an aqueous environment.We report here the first synthesis of aqueous-phase CdSeS MSC-380(displayi...Little is known about the synthesis of colloidal ternary semiconductor magic-size clusters(MSCs)and quantum dots(QDs)in an aqueous environment.We report here the first synthesis of aqueous-phase CdSeS MSC-380(displaying sharp optical absorption peaking at~380 nm)at room temperature and QDs at elevated temperatures.The reaction contains CdCl2·2.5H_(2)O,3-mercaptopropionic acid(MPA,HS-(CH_(2))2-COOH),selenourea(SeU,NH_(2)-C(Se)-NH_(2)),and thioacetamide(TAA,CH3-C(S)-NH_(2)).Prior to the nucleation and growth(N/G)of QDs,there are clusters formed at 25℃.The prenucleation-stage clusters are the precursor compound of CdSeS MSC-380(PC-380).The PC is relatively transparent in optical absorption;in the presence of a primary amine butylamine(BTA,CH3-(CH_(2))3-NH_(2)),the PC transforms to absorbing CdSeS MSC-380.At 80℃,the PC decreases and the N/G of CdSeS QDs appears.The present study paves the way to the aqueous-phase synthesis of ternary CdSeS MSCs and QDs,providing an in-depth understanding of the cluster formation in the prenucleation stage of CdSeS QDs.展开更多
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
文摘We demonstrate the generation of a Q-switching pulse train in an erbium-doped fiber laser (EDFL) cavity using a newly developed cadmium selenide (CdSe) based saturable absorber (SA). The SA is obtained by embedding CdSe nanomaterials into a polymethyl methacrylate (PMMA) microfiber. It is incorporated into an EDFL cavity to generate a Q-switched laser operating at 1533.6nm. The repetition rates of the produced pulse train are tunable within 37–64kHz as the pump power is varied from 34mW to 74mW. The corresponding pulse width reduces from 7.96μs to 4.84μs, and the maximum pulse energy of 1.16nJ is obtained at the pump power of 74mW.
文摘High performance Dynamic Light Scattering (DLS) has been used to determine the hydrodynamic di-ameters of CdSe nanocrystals as well as CdSe cluster molecules in a size range of 1 to 10 nm (Eichh鰂er et al., 2001). The method enables the determination of their particle size, including their ligand shells, in solution. The results are consistent with the blue shift of the absorption bands, as well as Transmission Electron Microscope (TEM) experiments. The sizes of the cluster molecules were estimated from space filling models constructed from the results of a single crystal X-ray structure determination. DLS gave comparable results for the size of both types of compound, indicating that it is potentially an important additional measurement technique to TEM, which uses harsh measurement conditions, and to powder X-ray diffraction, which is difficult to interpret below 5 nm.
基金the National NaturalScience Foundation of China (Grant Nos. 61725401, 61904058,and 62050039)the National Key R&D Program of China (No.2016YFA0204000)+2 种基金the Innovation Fund of WNLO, National PostdoctoralProgram for Innovative Talent (No. BX20190127)the Graduates’ InnovationFund of Huazhong University of Science and Technology (No.2020yjsCXCY003)China Postdoctoral Science Foundation Project(Nos. 2019M662623 and 2020M680101).
文摘Cadmium selenide(CdSe)belongs to the binary II-VI group semiconductor with a direct bandgap of~1.7 eV.The suitable bandgap,high stability,and low manufacturing cost make CdSe an extraordinary candidate as the top cell material in silicon-based tandem solar cells.However,only a few studies have focused on CdSe thin-film solar cells in the past decades.With the advantages of a high deposition rate(~2µm/min)and high uniformity,rapid thermal evaporation(RTE)was used to maximize the use efficiency of CdSe source material.A stable and pure hexagonal phase CdSe thin film with a large grain size was achieved.The CdSe film demonstrated a 1.72 eV bandgap,narrow photoluminescence peak,and fast photoresponse.With the optimal device structure and film thickness,we finally achieved a preliminary efficiency of 1.88%for CdSe thin-film solar cells,suggesting the applicability of CdSe thin-film solar cells.
基金Supported by the National Natural Science Foundation of China(Nos.20704042,60508004 and 60225004)the Committee of Science and Technology of Shanghai City,China(Nos.07JC14058 and 0752nm016)+1 种基金the Pujiang Talent Plan of Shanghai City,China(No.07PJ14095)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6—10.
文摘The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.
文摘The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.
基金K.Y.thanks the National Natural Science Foundation of China(NSFC,No.21773162)the Fundamental Research Funds for the Central Universities,the Applied Basic Research Programs of Science and Technology Department of Sichuan Province(No,2020YJ0326)+3 种基金the State Key Laboratory of Polymer Materials Engineering of Sichuan University respectively for No.sklpme2020-2-09,and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University for No.SKLSSM 2021030M.Z.is grateful to National Natural Science Foundation of China((NSFC,No.22002099)China Postdoctoral Science Foundation(No.2020T130441)Sichuan University postdoctoral interdisciplinary Innovation Fund and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University(No.SKLSSM 2021032)C.R.L.is grateful to the COVID-19 Science and Technology Emergency Project of Sichuan Province of China(No.2021YFS0408).
文摘Little is known about how to precisely promote the selective production of either colloidal semiconductor metal chalcogenide(ME),magic-size clusters(MSCs),or quantum dots(QDs).Recently,a two-pathway model has been proposed to comprehend their evolution;here,we reveal for the first time that the size of precursors plays a decisive role in the selected evolution pathway of MSCs and QDs.With the reaction of cadmium myristate(Cd(MA)2)and tri-n-octylphosphine selenide(SeTOP)in 1-octadecene(ODE)as a model system,the size of Cd precursors was manipulated by the steric hindrance of carboxylic acid(RCOOH)additive.Without RCOOH,the reaction produced both CdSe MSCs and QDs(from 100 to 240℃).With RCOOH,the reaction produced MSCs or QDs when R was small(such as CH3−)or large(such as C6H5−),respectively.According to the twopathway model,the selective evolution is attributed to the promotion and suppression of the self-assembly of Cd and Se precursors,respectively.We propose that the addition of carboxylic acid may occur ligand exchange with Cd(MA)2,causing the different sizes of Cd precursor.The results suggest that the size of Cd precursors regulates the self-assemble behavior of the precursors,which dictates the directed evolution of either MSCs or QDs.The present findings bring insights into the two-pathway model,as the size of M and E precursors determine the evolution pathways of MSCs or QDs,the understanding of which is of great fundamental significance toward mechanism-enabled design and predictive synthesis of functional nanomaterials.
基金the National Natural Science Foundation of China(NSFC)(No.22275126)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0634)+3 种基金the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University(No.SKLSSM 2024036)gratitude for NSFC(No.32000934)and the Natural Science Foundation of Sichuan Province(No.24NSFSC6433)for NSFC(No.22305162)the discussion on experimental data.For TEM,we thank College of Chemistry of Sichuan University(Dr.Feng Yang).
文摘Little is known about the synthesis of colloidal ternary semiconductor magic-size clusters(MSCs)and quantum dots(QDs)in an aqueous environment.We report here the first synthesis of aqueous-phase CdSeS MSC-380(displaying sharp optical absorption peaking at~380 nm)at room temperature and QDs at elevated temperatures.The reaction contains CdCl2·2.5H_(2)O,3-mercaptopropionic acid(MPA,HS-(CH_(2))2-COOH),selenourea(SeU,NH_(2)-C(Se)-NH_(2)),and thioacetamide(TAA,CH3-C(S)-NH_(2)).Prior to the nucleation and growth(N/G)of QDs,there are clusters formed at 25℃.The prenucleation-stage clusters are the precursor compound of CdSeS MSC-380(PC-380).The PC is relatively transparent in optical absorption;in the presence of a primary amine butylamine(BTA,CH3-(CH_(2))3-NH_(2)),the PC transforms to absorbing CdSeS MSC-380.At 80℃,the PC decreases and the N/G of CdSeS QDs appears.The present study paves the way to the aqueous-phase synthesis of ternary CdSeS MSCs and QDs,providing an in-depth understanding of the cluster formation in the prenucleation stage of CdSeS QDs.