We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)...We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)exhibited the best adsorption capacities for both Sb(Ⅲ)and Sb(Ⅴ)(151.8 and 472.8 mg/g,respectively)which were higher than those of most adsorbents previously reported.The effect of steric hindrance was evident during Sb removal using the Fe-based MOFs,and the proper diameter of the smallest cage windows/channels should be considered an important parameter during the evaluation and selection of MOFs.Additionally,the adsorption capacities of MIL-101(Fe)for Sb(Ⅴ)decreased with increasing initial p H values(from 3.0 to 8.0),while the opposite trend was observed for Sb(Ⅲ).Chloride,nitrate and sulfate ions had a negligible influence on Sb(Ⅴ)adsorption,while NO3-and SO42-improved Sb(Ⅲ)adsorption.This result implies that inner sphere complexes might form during both Sb(Ⅲ)and Sb(Ⅴ)adsorption.展开更多
基金supported by the National Natural Science Foundation of China (No. 41201302)the Natural Science Foundation of Shanghai (No. 17ZR1407000)the Fundamental Research Funds for the Central Universities (No. 222201514337)
文摘We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)exhibited the best adsorption capacities for both Sb(Ⅲ)and Sb(Ⅴ)(151.8 and 472.8 mg/g,respectively)which were higher than those of most adsorbents previously reported.The effect of steric hindrance was evident during Sb removal using the Fe-based MOFs,and the proper diameter of the smallest cage windows/channels should be considered an important parameter during the evaluation and selection of MOFs.Additionally,the adsorption capacities of MIL-101(Fe)for Sb(Ⅴ)decreased with increasing initial p H values(from 3.0 to 8.0),while the opposite trend was observed for Sb(Ⅲ).Chloride,nitrate and sulfate ions had a negligible influence on Sb(Ⅴ)adsorption,while NO3-and SO42-improved Sb(Ⅲ)adsorption.This result implies that inner sphere complexes might form during both Sb(Ⅲ)and Sb(Ⅴ)adsorption.