We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an ov...We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.展开更多
A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced t...A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript as- sembly contigs (TACs) with an N50 of 1510 bp, the largest one being -8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping posi- tions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.展开更多
Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been tr...Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been transferred to develop CMS lines in the background of cultivated pigeonpea. However, A2 (Cajanus scarabaeoides) and A4 (Cajanus cajanifolius) cytoplasms have been utilized most frequently. In order to study fertility restoration efficiency in F1 hybrids having either A2 or A4 cytoplasms, an experiment was conducted at the Indian Institute of Pulses Research (IIPR), Kanpur during 2008-2012. Four CMS lines namely Hy4A, H28A (each with A2 cytoplasm), ICP 2039A and ICP 2043A (both with A4 cytoplasm) were crossed with ten genotypes/restorers of long duration pigeonpea for two years. The F1 hybrids so-obtained were assessed in the succeeding years for pollen fertility and pod setting. All the pollinators except IPA 203 restored fertility in F1 hybrids derived from ICP 2039A and ICP 2043A (both having A4 cytoplasm). However, none of the restorers were effective in restoring fertility in hybrids derived from Hy4A and H28A (each with A2 cytoplasm). This could be ascribed to undesirable linkage drag still present in these two CMS lines having A2 cytoplasm. The F2 progenies derived from 4 hybrids (ICP 2039A × NA-1, ICP 2039A × Bahar, ICP 2043A × NA-1 and ICP 2043A × Bahar) segregated approximately into 3 fertile: 1 sterile plants. However, 2 F2 progenies having Pusa 9 as the restorer revealed approximately 15 fertile:1 sterile ratio. Thus monogenic and digenic duplicate gene action with complete dominance for fertility restoration was observed in F1 hybrids derived from CMS lines having A4 cytoplasm. F3 progenies from individual F2 plants of these crosses also confirmed the same pattern of fertility restoration. This study indicated that CMS lines based on A4 cytoplasm would be more desirable as these might have more number of restorers compared to those having A2 cytoplasm.展开更多
The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhib...The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.展开更多
The species Cajanus cajan L. where pigeonpea is from presents a harvest potential in tropical regions for it is used as human and animal feed, besides being used as green fertilizer. However, the harvest area of this ...The species Cajanus cajan L. where pigeonpea is from presents a harvest potential in tropical regions for it is used as human and animal feed, besides being used as green fertilizer. However, the harvest area of this Fabaceae is still insignificant, due to especially the lack of quality seeds. In this context, it is possible to affirm that drying and store are portrayed as important steps for obtaining superior quality seeds. The aim of this study is to evaluate the physiologic quality of dwarf pigeonpea seeds, with different water content during storage. A factorial scheme 3 × 6 was adopted in the delimitation completely randomized, with four replications. Treatments were constituted by the combination of lots of seeds containing three different water contents (11%, 14% and 16%), submitted to a 10-month storage period, with evaluations every two months (0, 2, 4, 6, 8 and 10). Seeds were stocked in a bag type kraft under normal lab conditions, that is, no control. Physiologic quality of the seeds was evaluated through the following tests: Germination Pattern Test—GPT, first count of germination, accelerated aging and electric conductivity. It can be concluded that pigeonpea with hard seeds containing water content at 11% existing superior physiologic quality throughout the 10-month storage, under no controlled condition, certainly promoted by the less intense breathing from the reserves cumulated in the seed lot. Pigeonpea seeds storage with water content superior to 14% promotes a sharp decrease of physiologic quality, due to an increase in metabolic activity.展开更多
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the chara...Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the characteristic feature of this crop. This is primarily ascribed to its susceptibility/sensitivity to a number of biotic and abiotic factors. Among biotic factors, insects such as pod borer (Helicoverpa armigera), pod fly (Melanoagromyza obtusa) and spotted borer (Maruca vitrata) substantially damage the crop and result in significant economic losses. Management of these insects by genetic means has always been considered environment friendly approach. However, genetic improvement has always been impeded by limited genetic variability in the primary gene pool of pigeonpea. Wild species present in the secondary and tertiary gene pools have been reported to carry resistance for such insects. However, transfer of resistance through conventional backcrossing has not been much successful. It calls for gene introgression through marker assisted backcrossing (MABC) or advanced backcross breeding (AB breeding). In this review, we have attempted to assess the progress made through conventional and molecular breeding and suggested the ways to move further towards genetic enhancement for insects resistance in展开更多
Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst...Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst these, pigeonpea or red gram (Cajanus cajan (L.) Millspaugh) is an important food legume that can be grown under rainfed conditions with least inputs. Pigeonpea is rich in starch, protein, calcium, manganese, crude fiber, fat, trace elements, and minerals. Besides its high nutritional value, pigeonpea is also used as traditional folk medicine in India, China, Philippines and some other nations. Literature on this aspect show that pigeonpea is capable to prevent and cure a number of human ailments such as bronchitis, coughs, pneumonia, respiratory infections, dysentery, menstrual disorders, sores, wounds, abdominal tumors, tooth ache, and diabetes.展开更多
To identify bioactive compound in pigeon pea leaves (Cajanus cajan) that inhibits Salmonella thypi (S. thypi).MethodsThe leaf sample was powdered and macerated with methanol and fractioned by liquid-liquid extrac...To identify bioactive compound in pigeon pea leaves (Cajanus cajan) that inhibits Salmonella thypi (S. thypi).MethodsThe leaf sample was powdered and macerated with methanol and fractioned by liquid-liquid extraction using ethyl acetate. The fraction was chromatographed and the isolates were identified for major component with liquid chromatography-mass spectrometry and the antibacterial activity was tested against S. thypi by Kirby-Bauer method.ResultsSubfraction 1 from the ethyl acetate fraction formed a yellowish solid with m/z 272, identified as naringenin. The naringenin-rich fraction shows fairly well inhibitory toward S. thypi in comparison with chloramphenicol.ConclusionsNaringenin shows antibacterial activity and can be developed to treat typhoid.展开更多
The pre-harvest application of herbicides may impair seed quality. This way, this paper was conducted to evaluate the effects of the application of desiccant herbicides on the physiological quality of pigeonpea seeds....The pre-harvest application of herbicides may impair seed quality. This way, this paper was conducted to evaluate the effects of the application of desiccant herbicides on the physiological quality of pigeonpea seeds. Six batches of seeds from plants desiccated with glyphosate were evaluated at doses: 1.125 (B1), 1.5 (B2) and 1.875 L·ha-1 (B3);and Gramocil (20% Paraquat + 10% Diurom) at doses: 1.5 (B4) and 2 L·ha-1 (B5), and a control which received no application (B6). Seed viability was assessed through the germination standard test, and vigor through the first germination count, accelerated aging, electrical conductivity, seedling length, seedling dry matter and biomass density tests. The experimental design was the completely randomized, with four replications. Data were submitted to variance analysis, and when significant effects were observed, the Scott- Knott test was carried out at 5% probability using the SISVAR 5.1 software. The results showed that: a) the application of 1.875 L·ha-1 of glyphosate was harmful to pigeonpea seed viability and vigor, evaluated through the accelerated aging test;b) applications of glyphosate in a 1.875 L·ha-1 dose and Gramocil in 2 L·ha-1 resulted in low vigor according to the electrical conductivity test of seeds;and c) the seed vigor measured by the first count, seedling length, seedling dry matter and biomass density test was not influenced by the type of desiccant applied.展开更多
文摘We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.
文摘A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript as- sembly contigs (TACs) with an N50 of 1510 bp, the largest one being -8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping posi- tions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.
文摘Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been transferred to develop CMS lines in the background of cultivated pigeonpea. However, A2 (Cajanus scarabaeoides) and A4 (Cajanus cajanifolius) cytoplasms have been utilized most frequently. In order to study fertility restoration efficiency in F1 hybrids having either A2 or A4 cytoplasms, an experiment was conducted at the Indian Institute of Pulses Research (IIPR), Kanpur during 2008-2012. Four CMS lines namely Hy4A, H28A (each with A2 cytoplasm), ICP 2039A and ICP 2043A (both with A4 cytoplasm) were crossed with ten genotypes/restorers of long duration pigeonpea for two years. The F1 hybrids so-obtained were assessed in the succeeding years for pollen fertility and pod setting. All the pollinators except IPA 203 restored fertility in F1 hybrids derived from ICP 2039A and ICP 2043A (both having A4 cytoplasm). However, none of the restorers were effective in restoring fertility in hybrids derived from Hy4A and H28A (each with A2 cytoplasm). This could be ascribed to undesirable linkage drag still present in these two CMS lines having A2 cytoplasm. The F2 progenies derived from 4 hybrids (ICP 2039A × NA-1, ICP 2039A × Bahar, ICP 2043A × NA-1 and ICP 2043A × Bahar) segregated approximately into 3 fertile: 1 sterile plants. However, 2 F2 progenies having Pusa 9 as the restorer revealed approximately 15 fertile:1 sterile ratio. Thus monogenic and digenic duplicate gene action with complete dominance for fertility restoration was observed in F1 hybrids derived from CMS lines having A4 cytoplasm. F3 progenies from individual F2 plants of these crosses also confirmed the same pattern of fertility restoration. This study indicated that CMS lines based on A4 cytoplasm would be more desirable as these might have more number of restorers compared to those having A2 cytoplasm.
文摘The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.
基金To the Foundation for Support of Higher Education(CAPES)the partial funding of researchThe National Council for Scientific and Technological Development(CNPq)the receive of productivity in research grants to the tree author.
文摘The species Cajanus cajan L. where pigeonpea is from presents a harvest potential in tropical regions for it is used as human and animal feed, besides being used as green fertilizer. However, the harvest area of this Fabaceae is still insignificant, due to especially the lack of quality seeds. In this context, it is possible to affirm that drying and store are portrayed as important steps for obtaining superior quality seeds. The aim of this study is to evaluate the physiologic quality of dwarf pigeonpea seeds, with different water content during storage. A factorial scheme 3 × 6 was adopted in the delimitation completely randomized, with four replications. Treatments were constituted by the combination of lots of seeds containing three different water contents (11%, 14% and 16%), submitted to a 10-month storage period, with evaluations every two months (0, 2, 4, 6, 8 and 10). Seeds were stocked in a bag type kraft under normal lab conditions, that is, no control. Physiologic quality of the seeds was evaluated through the following tests: Germination Pattern Test—GPT, first count of germination, accelerated aging and electric conductivity. It can be concluded that pigeonpea with hard seeds containing water content at 11% existing superior physiologic quality throughout the 10-month storage, under no controlled condition, certainly promoted by the less intense breathing from the reserves cumulated in the seed lot. Pigeonpea seeds storage with water content superior to 14% promotes a sharp decrease of physiologic quality, due to an increase in metabolic activity.
文摘Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the characteristic feature of this crop. This is primarily ascribed to its susceptibility/sensitivity to a number of biotic and abiotic factors. Among biotic factors, insects such as pod borer (Helicoverpa armigera), pod fly (Melanoagromyza obtusa) and spotted borer (Maruca vitrata) substantially damage the crop and result in significant economic losses. Management of these insects by genetic means has always been considered environment friendly approach. However, genetic improvement has always been impeded by limited genetic variability in the primary gene pool of pigeonpea. Wild species present in the secondary and tertiary gene pools have been reported to carry resistance for such insects. However, transfer of resistance through conventional backcrossing has not been much successful. It calls for gene introgression through marker assisted backcrossing (MABC) or advanced backcross breeding (AB breeding). In this review, we have attempted to assess the progress made through conventional and molecular breeding and suggested the ways to move further towards genetic enhancement for insects resistance in
文摘Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst these, pigeonpea or red gram (Cajanus cajan (L.) Millspaugh) is an important food legume that can be grown under rainfed conditions with least inputs. Pigeonpea is rich in starch, protein, calcium, manganese, crude fiber, fat, trace elements, and minerals. Besides its high nutritional value, pigeonpea is also used as traditional folk medicine in India, China, Philippines and some other nations. Literature on this aspect show that pigeonpea is capable to prevent and cure a number of human ailments such as bronchitis, coughs, pneumonia, respiratory infections, dysentery, menstrual disorders, sores, wounds, abdominal tumors, tooth ache, and diabetes.
文摘To identify bioactive compound in pigeon pea leaves (Cajanus cajan) that inhibits Salmonella thypi (S. thypi).MethodsThe leaf sample was powdered and macerated with methanol and fractioned by liquid-liquid extraction using ethyl acetate. The fraction was chromatographed and the isolates were identified for major component with liquid chromatography-mass spectrometry and the antibacterial activity was tested against S. thypi by Kirby-Bauer method.ResultsSubfraction 1 from the ethyl acetate fraction formed a yellowish solid with m/z 272, identified as naringenin. The naringenin-rich fraction shows fairly well inhibitory toward S. thypi in comparison with chloramphenicol.ConclusionsNaringenin shows antibacterial activity and can be developed to treat typhoid.
基金To the Foundation for Support of Higher Education—CAPES the partial funding of research and the receive of the scholarship to the first authorThe National Council for Scientific and Technological Development—CNPq the receive of productivity in research grants to the second and sixth author.
文摘The pre-harvest application of herbicides may impair seed quality. This way, this paper was conducted to evaluate the effects of the application of desiccant herbicides on the physiological quality of pigeonpea seeds. Six batches of seeds from plants desiccated with glyphosate were evaluated at doses: 1.125 (B1), 1.5 (B2) and 1.875 L·ha-1 (B3);and Gramocil (20% Paraquat + 10% Diurom) at doses: 1.5 (B4) and 2 L·ha-1 (B5), and a control which received no application (B6). Seed viability was assessed through the germination standard test, and vigor through the first germination count, accelerated aging, electrical conductivity, seedling length, seedling dry matter and biomass density tests. The experimental design was the completely randomized, with four replications. Data were submitted to variance analysis, and when significant effects were observed, the Scott- Knott test was carried out at 5% probability using the SISVAR 5.1 software. The results showed that: a) the application of 1.875 L·ha-1 of glyphosate was harmful to pigeonpea seed viability and vigor, evaluated through the accelerated aging test;b) applications of glyphosate in a 1.875 L·ha-1 dose and Gramocil in 2 L·ha-1 resulted in low vigor according to the electrical conductivity test of seeds;and c) the seed vigor measured by the first count, seedling length, seedling dry matter and biomass density test was not influenced by the type of desiccant applied.