A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of ca...A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.展开更多
Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we...Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.展开更多
Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment char...Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment characteristics of metal elements. REE normalization is utilized to reveal the origin of the crusts; effects of water depth on Co enrichment and impacts ofphosphatization on mineral quality are discussed to obtain the evolution of these marine mineral deposits, which gives support to further resource assessment. Conclusions are reached as follows: 1) Elemental abundances, inter-element relation- ships, and shale-normalized REE patterns for phosphate- poor crusts from different locations reflect hydrogenetic origin of the crusts. EFs (enrichment coefficients) of REE exhibit exponential increase from surface sediments to phosphorite to polymetallic nodules to crusts, suggesting that the improved degree of hydrogeneous origin induces the enrichment of REE. 2) The crusts in the Western Pacific, formed through hotspot produced guyots trails, have relatively lower REE than those in the Mid-Pacific. The latter could be attributed to the peculiar submarine topography of seamounts formed by intraplate volcanism. 3) The non-phosphatized younger crust layers have 40% higher Co than the phosphatized older layers. This indicates the modification of the elemental composition in these crusts by phosphatization. A general depletion of hydroxide-dominated elements such as Co, Ni, and Mn and enrichment of P, Ca, Ba, and Sr is evident in phosphatized crusts, whereas non-phosphatized younger generation crusts are rich in terrigenous aluminosilicate detrital matter. 4) Co increases above the carbonate compensation depth (CCD) from less than 0.53% to over 0.65% in seamount regions with water depth of less than 2,500 m, suggesting the significance of the dissolution of carbonate in the sea water column to the growth and composition of crusts.展开更多
Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,coba...Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 41076072 and 40676025)
文摘A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.
文摘Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.
基金This work was funded by China Ocean Mineral Resources R & D Association (DY125-14-R-01 and DY125-13-R-06), Zhejiang Provincial Natural Science Foundation of China (Y5100117), the National Natural Science Foundation of China (Grant No. 40706057), and Interdisciplinary Guiding Fund of Marine Science of Zhejiang University (2012HY006A).
文摘Elemental geochemistry is an essential part of understanding mineralization mechanisms. In this paper, a data set of 544 cobalt crust samples from seamounts of the Western Pacific are used to study the enrichment characteristics of metal elements. REE normalization is utilized to reveal the origin of the crusts; effects of water depth on Co enrichment and impacts ofphosphatization on mineral quality are discussed to obtain the evolution of these marine mineral deposits, which gives support to further resource assessment. Conclusions are reached as follows: 1) Elemental abundances, inter-element relation- ships, and shale-normalized REE patterns for phosphate- poor crusts from different locations reflect hydrogenetic origin of the crusts. EFs (enrichment coefficients) of REE exhibit exponential increase from surface sediments to phosphorite to polymetallic nodules to crusts, suggesting that the improved degree of hydrogeneous origin induces the enrichment of REE. 2) The crusts in the Western Pacific, formed through hotspot produced guyots trails, have relatively lower REE than those in the Mid-Pacific. The latter could be attributed to the peculiar submarine topography of seamounts formed by intraplate volcanism. 3) The non-phosphatized younger crust layers have 40% higher Co than the phosphatized older layers. This indicates the modification of the elemental composition in these crusts by phosphatization. A general depletion of hydroxide-dominated elements such as Co, Ni, and Mn and enrichment of P, Ca, Ba, and Sr is evident in phosphatized crusts, whereas non-phosphatized younger generation crusts are rich in terrigenous aluminosilicate detrital matter. 4) Co increases above the carbonate compensation depth (CCD) from less than 0.53% to over 0.65% in seamount regions with water depth of less than 2,500 m, suggesting the significance of the dissolution of carbonate in the sea water column to the growth and composition of crusts.
基金The National Natural Science Foundation of China under contract Nos 42072324 and 91958202the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0106+1 种基金the Resource&Environment Project of China Ocean Mineral Resources R&D Association under contract No.DY135-C1-1-03the Geological Survey Project of China Geological Survey under contract No.DD20190629.
文摘Given the advances in satellite altimetry and multibeam bathymetry,benthic terrain classification based on digital bathymetric models(DBMs)has been widely used for the mapping of benthic topographies.For instance,cobaltrich crusts(CRCs)are important mineral resources found on seamounts and guyots in the western Pacific Ocean.Thick,plate-like CRCs are known to form on the summit and slopes of seamounts at the 1000–3000 m depth,while the relationship between seamount topography and spatial distribution of CRCs remains unclear.The benthic terrain classification of seamounts can solve this problem,thereby,facilitating the rapid exploration of seamount CRCs.Our study used an EM122 multibeam echosounder to retrieve high-resolution bathymetry data in the CRCs contract license area of China,i.e.,the Jiaxie Guyots in 2015 and 2016.Based on the DBM construted by bathymetirc data,broad-and fine-scale bathymetric position indices were utilized for quantitative classification of the terrain units of the Jiaxie Guyots on multiple scales.The classification revealed four first-order terrain units(e.g.,flat,crest,slope,and depression)and eleven second-order terrain units(e.g.,local crests,depressions on crests,gentle slopes,crests on slopes,and local depressions,etc.).Furthermore,the classification of the terrain and geological analysis indicated that the Weijia Guyot has a large flat summit,with local crests at the southern summit,whereas most of the guyot flanks were covered by gentle slopes.“Radial”mountain ridges have developed on the eastern side,while large-scale gravitational landslides have developed on the western and southern flanks.Additionally,landslide masses can be observed at the bottom of these slopes.The coverage of local crests on the seamount is∼1000 km^(2),and the local crests on the peak and flanks of the guyots may be the areas where thick and continuous plate-like CRCs are likely to occur.