A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphat...A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.展开更多
基金supported by Open Foundation of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources of China(No.CCUM-KY-2310)Science and Technology Program of Guizhou Province,China(Qiankehe support(2020)2Y048).
文摘A novel quaternary ammonium salt collector,LH-01,was employed for the reverse cationic flotation of a magnesium-depleted concentrate(P2O5 grade of 19.72wt%,SiO2 content of 44.26wt%).We achieved an outstanding phosphate concentrate with a P2O5 grade of 35.16wt%,a SiO2 content of 6.06wt%,and a P2O5 recovery of 75.88%.This process was accomplished through two sequential reverse cationic flotation processes designed for quartz removal.Importantly,the quartz removal by LH-01 reached 94.17%,far superior to that by dodecyltrimethylammonium chloride,achieving highly selective separation of quartz and apatite.To understand the adsorption mechanism and kinetics of the collector LH-01 on quartz and apatite surfaces,various techniques,such as quartz crystal microbalance with dissipation,atomic force microscopy,and X-ray photoelectron spectroscopy,were employed.Results revealed that the adsorption layer of LH-01 on the apatite surface was thin and rigid,with a significantly lower hydrophobic effect than that of the viscoelastic multiple adsorption layer formed by LH-01 on the quartz surface.This disparity was identified as the primary factor contributing to the selective flotation separation of apatite and quartz.Moreover,the adsorption of LH-01 on the quartz surface was the result of multiple forces,including electrostatic adsorption,multiple-hydrogen-bond adsorption,and intermolecular hydrophobic association.