Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by vis...Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.展开更多
文摘Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.