The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its...The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.展开更多
In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces...In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare...Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.展开更多
Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and ...Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.展开更多
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi...Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology.展开更多
High gradient magnetic separation was conducted in order to separate insoluble zinc ferrite from zinc calcine before acid leaching of hydrometallurgical process. Chemical composition and structural characterization of...High gradient magnetic separation was conducted in order to separate insoluble zinc ferrite from zinc calcine before acid leaching of hydrometallurgical process. Chemical composition and structural characterization of zinc calcine were studied via inductively coupled plasma (ICP), X-ray diffraction (XRD), Mossbauer spectra, scanning electron microscopy (SEM) and laser particle analysis (LPA). The parameters of magnetic separation which affect the distribution of zinc ferrite and undesired elements, such as calcium, sulfur and lead in magnetic concentrate were investigated. The results of high gradient magnetic separation indicate that more than 85% of zinc ferrite is distributed into magnetic concentrate from the zinc calcine under the magnetic induction of 0.70 T. In addition, about 60% of calcium and 40% of sulfur distribute in non magnetic phases of tailings during magnetic separation process. Most of lead distributes uniformly along the zinc calcine in superfine particle size.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt...A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.展开更多
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as...Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step.展开更多
The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag...The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.展开更多
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ...The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.展开更多
Pozzolana which is an eco-friendly and cheap supplementary cementious material has not been established on a commercial scale in the construction industry in Nigeria. Hence, this paper is aimed at presenting a feasibi...Pozzolana which is an eco-friendly and cheap supplementary cementious material has not been established on a commercial scale in the construction industry in Nigeria. Hence, this paper is aimed at presenting a feasibility study to show the viability and highlight the business opportunities available for local and foreign investors in the area of pozzolana production in Nigeria. The paper discussed the technical requirements and estimated start-up capital for setting up a Pozzolana production plant from calcinated of Fifteen Thousand Tonnes Annual Production Capacity. An outline for start-up capital identified building and civil work, furniture and fixtures, machinery and equipment requirement, intangible assets, and seed fund. Raw materials/utilities and organizational requirement for annual production were also presented. The investment is viable with a total investment cost of $507,321.23, annual net profit of $107,961.70 and a payback period of 4.7 years. The net profit ratio and rate of return are 16.28% and 21.28% respectively. The findings and understanding of the technical and financial requirements from this work will aid investors in making decisions. The project if carried out will reduce cement contents in concrete and mortar structures, with eco-friendly cement admixtures and subsequently reduce the cost of construction in general.展开更多
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),...Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.展开更多
A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai ...A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.展开更多
Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potenti...Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned.Herein,a series of rod-shaped porous alumina were prepared through a hydrothermal route,followed by calcination.It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature.Such alumina materials were used as supports for active Cr2O3,and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina.The amount of coke deposited on a self-made catalyst(Cr-Al-800)was 3.6%,which was much lower than that deposited on the reference catalyst(15.7%).The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process,which was beneficial for its high activity and superior anti-coking properties.展开更多
Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried ...Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.展开更多
To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences...To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences of polypropylene (PP) fiber on the mechanical properties and volume stability were investigated. The results show that compressive strength of the geopolymer containing 33.3%(mass fraction) fly ash by steam curing at 80 ℃ for 6 d is improved by 35.5%. The 3-day compressive strength, flexural strength and impacting energy of geopolymers containing 0.05%PP fiber increase by 67.8%, 36.1% and 6.25%, while the shrinkage and modulus of compressibility decrease by 38.6% and 31.3%, respectively. The results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks, resulting in a great improvement of strength and toughness.展开更多
Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roastin...Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roasting temperature.The results indicate that the best agent is the combination of sodium chloride and calcium chloride,and its mass ratio of muscovite/NaCl/CaCl2is1.00:0.25:0.25.Calcined at 850℃ for 30 min,the rubidium leaching rate is up to 90.12%.The reaction of muscovite ore with the chlorinating agent CaCl2was studied by TG/DSC,and the surface morphology before and after leaching was characterized by SEM.Rubidium chloride products can be obtained using t-BAMBP extraction,hydrochloric acid re-extraction,and purification.展开更多
基金supported from the National Natural Science Foundation of China(No.52304148)the Youth Project of Shanxi Basic Research Program,China(No.202203021212262).
文摘The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.
基金support from the National Natural Science Foundation of China(21978128,91934302)partial support from the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)also acknowledged.Additionallysupported by the“Cultivation Program for The Excellent Doctoral Dissertation of Nanjing Tech University(3800124701)”.
文摘In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
文摘Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.
文摘Cu/SiO2 catalysts prepared by the ammonia evaporation method were applied to hydrogenation of diethyl malonate to 1,3‐propanediol. The calcination temperature played an important role in the structural evolution and catalytic performance of the Cu/SiO2 catalysts, which were systematically characterized by N2 adsorption‐desorption, inductively coupled plasma‐atomic emission spectros‐copy, N2O chemisorption, X‐ray diffraction, Fourier transform infrared spectroscopy, H2 tempera‐ture‐programmed reduction, transmission electron microscopy, and X‐ray photoelectron spectros‐copy. When the Cu/SiO2 catalyst was calcined at 723 K, 90.7%conversion of diethyl malonate and 32.3%selectivity of 1,3‐propanediol were achieved. Compared with Cu/SiO2 catalysts calcined at other temperatures, the enhanced catalytic performance of the Cu/SiO2 catalyst calcined at 723 K can be attributed to better dispersion of copper species, larger cupreous surface area and greater amount of copper phyllosilicate, which results in a higher ratio of Cu+/Cu0. The synergetic effect of Cu0 and Cu+is suggested to be responsible for the optimum activity.
基金Project (50734007) supported by the National Natural Science Foundation of ChinaProject (2007GA002) supported by Science and Technology Planning of Yunnan Province, ChinaProject (2008-16) supported by Analysis and Testing Foundation of Kunming University of Science and Technology, China
文摘Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology.
基金Project (2011AA061001) supported by the High-tech Research and Development Program of ChinaProject (50830301) supported by the National Natural Science Foundation of China+1 种基金Project (50925417) supported by National Science Fund for Distinguished Young Scientists, ChinaProject (2012BAC12102) supported by the National "Twelfth Five-year" Plan for Science and Technology Support, China
文摘High gradient magnetic separation was conducted in order to separate insoluble zinc ferrite from zinc calcine before acid leaching of hydrometallurgical process. Chemical composition and structural characterization of zinc calcine were studied via inductively coupled plasma (ICP), X-ray diffraction (XRD), Mossbauer spectra, scanning electron microscopy (SEM) and laser particle analysis (LPA). The parameters of magnetic separation which affect the distribution of zinc ferrite and undesired elements, such as calcium, sulfur and lead in magnetic concentrate were investigated. The results of high gradient magnetic separation indicate that more than 85% of zinc ferrite is distributed into magnetic concentrate from the zinc calcine under the magnetic induction of 0.70 T. In addition, about 60% of calcium and 40% of sulfur distribute in non magnetic phases of tailings during magnetic separation process. Most of lead distributes uniformly along the zinc calcine in superfine particle size.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
基金supported by the National Science Foundation for Young Scientists of China (51202171)~~
文摘A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.
基金Project(21176263)supported by the National Natural Science Foundation of China
文摘Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step.
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Hebei Province(No.E2013502292)
文摘The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.
基金supported by the National Basic Research Program of China(973 Program,2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.
文摘Pozzolana which is an eco-friendly and cheap supplementary cementious material has not been established on a commercial scale in the construction industry in Nigeria. Hence, this paper is aimed at presenting a feasibility study to show the viability and highlight the business opportunities available for local and foreign investors in the area of pozzolana production in Nigeria. The paper discussed the technical requirements and estimated start-up capital for setting up a Pozzolana production plant from calcinated of Fifteen Thousand Tonnes Annual Production Capacity. An outline for start-up capital identified building and civil work, furniture and fixtures, machinery and equipment requirement, intangible assets, and seed fund. Raw materials/utilities and organizational requirement for annual production were also presented. The investment is viable with a total investment cost of $507,321.23, annual net profit of $107,961.70 and a payback period of 4.7 years. The net profit ratio and rate of return are 16.28% and 21.28% respectively. The findings and understanding of the technical and financial requirements from this work will aid investors in making decisions. The project if carried out will reduce cement contents in concrete and mortar structures, with eco-friendly cement admixtures and subsequently reduce the cost of construction in general.
文摘Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.
文摘A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.
基金supported by the National Natural Science Foundation of China(21733002)Joint Sino-German Research Project(2161101168)Cheung Kong Scholars Program of China(T2015036)~~
文摘Direct catalytic propane dehydrogenation(PDH)to obtain propylene is a more economical and environmentally friendly route for propylene production.In particular,alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned.Herein,a series of rod-shaped porous alumina were prepared through a hydrothermal route,followed by calcination.It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature.Such alumina materials were used as supports for active Cr2O3,and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina.The amount of coke deposited on a self-made catalyst(Cr-Al-800)was 3.6%,which was much lower than that deposited on the reference catalyst(15.7%).The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process,which was beneficial for its high activity and superior anti-coking properties.
基金financially supported by Independent Research Subject from Ministry of Science and Technology of China(No.2008BWZ005)
文摘Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.
基金Project(2006AA06Z225) supported by the National High-Tech Research and Development Program of China
文摘To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences of polypropylene (PP) fiber on the mechanical properties and volume stability were investigated. The results show that compressive strength of the geopolymer containing 33.3%(mass fraction) fly ash by steam curing at 80 ℃ for 6 d is improved by 35.5%. The 3-day compressive strength, flexural strength and impacting energy of geopolymers containing 0.05%PP fiber increase by 67.8%, 36.1% and 6.25%, while the shrinkage and modulus of compressibility decrease by 38.6% and 31.3%, respectively. The results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks, resulting in a great improvement of strength and toughness.
基金supported by the Chinese Nonferrous Guilin Research Institute of Geology for Mineral Resource (No.ky20101372000001)
文摘Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roasting temperature.The results indicate that the best agent is the combination of sodium chloride and calcium chloride,and its mass ratio of muscovite/NaCl/CaCl2is1.00:0.25:0.25.Calcined at 850℃ for 30 min,the rubidium leaching rate is up to 90.12%.The reaction of muscovite ore with the chlorinating agent CaCl2was studied by TG/DSC,and the surface morphology before and after leaching was characterized by SEM.Rubidium chloride products can be obtained using t-BAMBP extraction,hydrochloric acid re-extraction,and purification.