期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb^(3+)-doped hydroxyapatite(Tb-HA)nanocrystallines 被引量:2
1
作者 Hairong Yin Yanxiao Li +2 位作者 Jianguang Bai Mingxin Ma Jing Liu 《Journal of Materiomics》 SCIE EI 2017年第2期144-149,共6页
Hydroxyapatite luminescent nanocrystallines doped with 6 mol.%Tb^(3+)(Tb-HA)were prepared via chemical deposition method and calcined at different temperature,and the effects of calcinations temperature on the lumines... Hydroxyapatite luminescent nanocrystallines doped with 6 mol.%Tb^(3+)(Tb-HA)were prepared via chemical deposition method and calcined at different temperature,and the effects of calcinations temperature on the luminescence intensity and fluorescent lifetime were studied.TEM image of Tb-HA revealed that the shape of nanocrystallines changed from needle-like to short rod-like and sphere-like with the increase of calcinations temperature;while the particles sizes decreased from 190 nm to 110 nm.the crystallinity degree increased.the typical emission peaks attributed to Tb^(3+) ions were observed in emission spectra of 6 mol.%Tb-HA under 378 nm excitation.the luminescent intensity of Tb-HA,which showed the fluorescence quenching,firstly enhanced and then decreased at 700℃;while the fluorescent lifetime increased firstly and then decreased after 600℃.Furthermore,the ratio of intensity between 545 nm and 490 nm corresponding to electric-dipole and magnetic-dipole transition(I_(R):I_(O))increases firstly and then decreases,which revealed that the proportion of substitute type and site of Ca^(2+) ions by Tb^(3+) ions were helpful to realize the substitute process and functional structure design. 展开更多
关键词 Tb-HA Tb^(3+) calcinations temperature Luminescent intensity Fluorescent lifetime
原文传递
Preparation and Characterization of Activated Carbons from Palm Nut Shells: Effects of Calcination Temperature on Porosity and Chemical Properties
2
作者 Charly Mve Mfoumou Berthy Lionel Mbouiti +2 位作者 Spenseur Bouassa Mougnala Pradel Tonda-Mikiela Guy Raymond Feuya Tchouya 《Open Journal of Inorganic Chemistry》 2024年第2期19-32,共14页
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare... Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions. 展开更多
关键词 Palm Nut Shells Activated Carbon Calcination temperature Porosity and Chemical Properties
下载PDF
Effect of Calcination Temperature on La-Modified Al2O3 Catalysts for Vapor Phase Hydrofluorination of Acetylene to Vinyl Fluoride 被引量:4
3
作者 毕庆员 鲁继青 +2 位作者 邢丽琼 郭明 罗孟飞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期89-94,I0002,共7页
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c... A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites. 展开更多
关键词 La2O3-Al2O3 catalyst Hydrofluorination reaction Vinyl fluoride ACETYLENE Calcination temperature
下载PDF
Effect of Calcination Temperature on Catalytic Activity and Textual Property of Cu/HMOR Catalysts in Dimethyl Ether Carbonylation Reaction 被引量:3
4
作者 张雪 李宇萍 +4 位作者 仇松柏 王铁军 马隆龙 张琦 定明月 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期220-224,I0004,共6页
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch... The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers. 展开更多
关键词 Dimethyl ether Methyl acetate Calcination temperature CARBONYLATION HMOR
下载PDF
Low temperature molten salt synthesis of porous La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6) microspheres with high catalytic activity for CO oxidation 被引量:4
5
作者 黄学辉 牛鹏举 商晓辉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1431-1439,共9页
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt... A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation. 展开更多
关键词 Molten salt method δ-MnO2 microsphere Porous spherical structure Calcination temperature Carbon monoxide oxidation
下载PDF
Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides:Effect of the calcination temperature 被引量:2
6
作者 吴明周 詹望成 +5 位作者 郭耘 王筠松 郭杨龙 龚学庆 王丽 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期184-192,共9页
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ... The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability. 展开更多
关键词 Manganese oxide catalyst Selective oxidation of cyclohexane OXYGEN Calcination temperature Solvent-free reaction
下载PDF
Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 被引量:1
7
作者 李金兵 姜志全 +1 位作者 王坤 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期103-109,I0004,共8页
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),... Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4. 展开更多
关键词 Co3O4/8iO2 catalyst CO oxidation Calcination temperature Surface oxygen vacancies
下载PDF
Effect of calcination temperatures on photocatalytic H_(2)O_(2)-production activity of ZnO nanorods 被引量:7
8
作者 Zicong Jiang Yong Zhang +2 位作者 Liuyang Zhang Bei Cheng Linxi Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期226-233,共8页
Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocataly... Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production. 展开更多
关键词 PHOTOCATALYSIS Hydrogen peroxide production ZnO nanorod Calcination temperature Oxygen reduction
下载PDF
Effects of Calcining Temperature and Holding Time on the Synthesis of Aluminum Titanate 被引量:8
9
作者 沈阳 阮玉忠 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第2期228-234,共7页
We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holdin... We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%. 展开更多
关键词 calcining temperature holding time AL2TIO5 crystalline structure MICROSTRUCTURE
下载PDF
Effects of Calcination Temperature on the Acidity and Catalytic Performances of HZSM-5 Zeolite Catalysts for the Catalytic Cracking of n-Butane 被引量:4
10
作者 Jiangyin Lu Zhen Zhao Chunming Xu Aijun Duan Pu Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第4期213-220,共8页
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ... The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking. 展开更多
关键词 HZSM-5 zeolite catalyst acidic modification calcination temperature N-BUTANE catalytic cracking OLEFIN
下载PDF
CO oxidation over Co_3O_4/SiO_2 catalysts:Effects of porous structure of silica and catalyst calcination temperature 被引量:4
11
作者 Jian Zheng Wei Chu +2 位作者 Hui Zhang Chengfa Jiang Xiaoyan Dai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期583-588,共6页
The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 n... The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide. 展开更多
关键词 cobalt catalysts carrier porosity catalytic property calcination temperature oxidation of carbon monoxide
下载PDF
Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides: Effect of calcination temperatures of precursor 被引量:2
12
作者 Zhengyi Pan Rijie Wang +2 位作者 Mingfeng Li Yang Chu Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期77-86,共10页
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me... SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor. 展开更多
关键词 metal phosphide calcination temperature methyl laurate hydrodeoxygenation DECARBONYLATION
下载PDF
Antibacterial Properties of V-doped Titanium-bearing Blast Furnace Slag Prepared at Different Calcination Temperatures 被引量:2
13
作者 王辉 杨合 +1 位作者 薛向欣 刘东 《过程工程学报》 CAS CSCD 北大核心 2010年第5期1025-1029,共5页
Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial p... Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity. 展开更多
关键词 V doping titanium-bearing blast furnace slag PHOTOCATALYST antibacterial activity calcination temperature
下载PDF
Effects of Calcination Temperature of Boron-Containing Magnesium Oxide Raw Materials on Properties of Magnesium Phosphate Cement as a Biomaterial 被引量:2
14
作者 董金美 余红发 +6 位作者 XIAO Xueying LI Ying WU Chengyou WEN Jing TAN Yongshan CHANG Chenggong ZHENG Weixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期671-676,共6页
A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw ... A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw materials and the effects of calcination temperature on the performance of MPBC. The phase composition and microstructure of the B-MgO raw materials and the hydration products (KMgPO4.6H2O) of MPBC were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that ionic impurities and the levels of toxic elements were sufficiently low in B-MgO raw materials to meet the medical requirements for MgO (Chinese Pharmacopeia, 2O10 Edition) and for hydroxyapatite surgical implants (GB23101.1-2O08). The temperature of B-MgO calcination had a marked influence on the hydration and hardening of MPBC pastes. Increasing calcination temperature prolonged the time required for the MPBC slurry to set, significantly decreased the hydration temperature, and prolonged the time required to reach the highest hydration temperature. However, the compressive strength of hardened MPBC did not increase with higher calcination temperatures. In the 900-1 000 ~C temperature range, the hardened MPBC had a higher compressive strength. Imaging analysis suggested that the setting time and the highest hydration temperature of MPBC pastes were dependent on the size and crystal morphology of the B-MgO materials. The production and microstructure compactness of KMgPOa'6H2O, the main hydration product, determined the compressive strength. 展开更多
关键词 magnesium phosphate bone cement boron-containing magnesium oxide calcination temperature
下载PDF
Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution 被引量:1
15
作者 Tingye Qi Haochen Wang +3 位作者 Guorui Feng Yujiang Zhang Jinwen Bai Yanna Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1161-1169,共9页
The effect of calcination temperature on the pozzolanic activity of maize straw stem ash(MSSA)was evaluated.The MSSA samples calcined at temperature values of 500,700,and 850℃ were dissolved in portlandite solution f... The effect of calcination temperature on the pozzolanic activity of maize straw stem ash(MSSA)was evaluated.The MSSA samples calcined at temperature values of 500,700,and 850℃ were dissolved in portlandite solution for 6 h,thereby obtaining residual samples.The MSSA and MSSA residual samples were analyzed using Fourier transform infrared spectroscopy,X-ray powder diffraction scanning electron microscopy,and X-ray photoelectron spectroscopy to determine vibration bonds,minerals,microstructures,and Si 2p transformation behavior.The conductivity,pH value,and loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were also determined.The main oxide composition of MSSA was silica and potassium oxide.The dissolution of the Si^(4+) content of MSSA at 500℃ was higher than those of the other calcination temperatures.The conductivity and loss of conductivity of MSSA at 700℃ were higher than those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700℃.C-S-H was easily identified in MSSA samples using X-ray powder diffraction,and small cubic and nearly spherical particles of C-S-H were found in the MSSA residual samples.In conclusion,the optimum calcination temperature of MSSA having the best pozzolanic activity is 500℃,but excessive agglomeration must be prevented. 展开更多
关键词 calcination temperature pozzolanic activity maize straw stem ash portlandite solution
下载PDF
Influence of Calcination Temperature on TiO_2 Nanotubes’Catalysis for TiO_2/UV/O_3 in Landfill Leachate Solution 被引量:1
16
作者 潘留明 季民 +1 位作者 王秀朵 赵乐军 《Transactions of Tianjin University》 EI CAS 2010年第3期179-186,共8页
The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as T... The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina- tion temperature's influence on TNTs' adsorption activity for for TiO2/UV/O3 was investigated in landfill leachate solution chemical oxygen demand (COD) and catalytic activity In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 rain, and then became close to those of the latter two in the following 40 rain. Compared with TNTs-300 and TNTs- 400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃. 展开更多
关键词 TiO2 nanotubes calcination temperature photocatalytic ozonation landfill leachate
下载PDF
Effect of pH value and calcination temperature on synthesis and characteristics of Cu-Ni nano-alloys
17
作者 María de los A.CANGIANO Manuel W.OJEDA María del C.RUIZ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3664-3677,共14页
Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morpholog... Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morphology, homogeneity and grain size of Cu?Ni nanoparticles were investigated. Both the parameters significantly affect the crystalline structure, composition and grain size. Cu?Ni alloys prepared at pH value of 1 do not contain impurities, and their compositions are Cu0.42Ni0.58, Cu0.45Ni0.55 and Cu0.52Ni0.48 reduced at 300, 400 and 500 °C, respectively. The grain size grows with the increase of calcination temperature for the precursor prepared at pH values of 1.6 and 3. The Ni content of the alloys gradually increases with the increase of calcination temperature at pH value of 3. 展开更多
关键词 nanostructured Cu-Ni alloys chemical synthesis physicochemical characteristics pH value calcination temperature
下载PDF
Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion
18
作者 Zhong Ma Guofu Liu +1 位作者 Hui Zhang Yonggang Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期98-105,共8页
As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination pro... As an industrial solid waste,pyrite cinder exhibited excellent reactivity and cycle stability in chemical looping combustion.Prior to the experiment,oxygen carriers often experienced a high temperature calcination process to stabilize the physico-chemical properties,which presented significant influence on the redox performance of oxygen carriers.However,the effect of calcination temperature on the cyclic reaction performance of pyrite cinder has not been studied in detail.In this work,the effect of calcination temperature on the redox activity and attrition characteristic of pyrite cinder were studied in a fluidizedbed reactor using CH_(4) as fuel.A series of pyrite cinder samples were prepared by controlling the calcination temperature.The redox activity and attrition rate of the obtained pyrite cinder samples were investigated deeply.The results showed that calcination temperature displayed significant impact on the redox performance of pyrite cinder.Considering CH_(4) conversion(80%–85%)and attrition resistance,the pyrite cinder calcined at 1050℃ presented excellent redox properties.In the whole experiment process,the CO_(2) selectivity of the pyrite cinder samples were not affected by the calcination temperature and were still close to 100%.The results can provide reference for optimizing the calcination temperature of pyrite cinder during chemical looping process. 展开更多
关键词 Chemical looping combustion Pyrite cinder Calcination temperature CO_(2)capture Attrition Waste treatment
下载PDF
Effect of the support calcination temperature on selective hydrodesulfurization of TiO_2 nanotubes supported CoMo catalysts
19
作者 Cuili Guo Yuanyuan Wu +1 位作者 Xin Wang Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期517-523,共7页
TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The ef... TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS. 展开更多
关键词 TiO2 nanotubes (TiO2-NTs) selective HDS CoMo catalyst calcination temperature
下载PDF
LSSVM Predictive Control for Calcination Zone Temperature in Rotary Kiln with IHS Algorithm
20
作者 Zhongda Tian Shujiang Li +1 位作者 Yanhong Wang Xiangdong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第4期67-74,共8页
The calcination zone temperature control is an important problem in rotary kiln production process. In order to solve this problem,a predictive control method based on improved harmony search algorithm( IHS)and least ... The calcination zone temperature control is an important problem in rotary kiln production process. In order to solve this problem,a predictive control method based on improved harmony search algorithm( IHS)and least square support vector machine( LSSVM) is proposed. LSSVM is utilized to bulid the nonlinear predictive model of calcination zone temperature in rotary kiln. The calcination zone temperature can be predicted through input control variable,the error and error correction of output feedback. The performance index function is established by deviation and control variable. An IHS algorithm with better fitness and faster convergence speed is proposed. The optimal control variable can be obtained by rolling optimization through this IHS algorithm. The stability of this predictive control method is proved to be feasible. The simulation and actual experiment results show that the proposed predictive control method has good control performance. 展开更多
关键词 rotary kiln calcination zone temperature least square support vector machine improved harmony search predictive control
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部