Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a...Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.展开更多
Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilate...Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.展开更多
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and...Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.展开更多
Background: Hypertension is a universal risk factor for cardiovascular diseases and is thus the leading cause of death worldwide. The identification of novel prognostic and pathogenesis biomarkers plays a key role in ...Background: Hypertension is a universal risk factor for cardiovascular diseases and is thus the leading cause of death worldwide. The identification of novel prognostic and pathogenesis biomarkers plays a key role in disease management. Methods: The GSE145854 and GSE164494 datasets were downloaded from the Gene Expression Omnibus (GEO) database and used for screening and validating hypertension signature genes, respectively. Gene Ontology (GO) enrichment analysis was performed on the differentially expressed genes (DEGs) related to calcium ion metabolism in patients with hypertension. The core genes related to immune infiltration were analyzed and screened, and the activity of the signature genes and related pathways was quantified using gene set enrichment analysis (GSEA). The infiltration of immune cells in the blood samples was analyzed, and the DEGs that were abnormally expressed in the clinical blood samples of patients with hypertension were verified via RT-qPCR. Results: A total of 176 DEGs were screened. GO showed that DEGs was involved in the regulation of calcium ion metabolism in biological processes (BP), actin mediated cell contraction, negative regulation of cell movement, and calcium ion transmembrane transport, and in the regulation of protease activity in molecular functions (MF). KEGG analysis revealed that the DEGs were involved mainly in the cGMP-PKG signaling pathway, ubiquitin-protein transferase, tight junction-associated proteins, and the regulation of myocardial cells. MF analysis revealed the immune infiltration function of the cells. RT-qPCR revealed that the expression of Cacna1d, Serpine1, Slc8a3, and Trpc4 was up regulated in hypertension, the expression of Myoz2 and Slc25a23 was down regulated. Conclusion: Cacna1d, Serpine1, Slc8a3, Trpc4, Myoz2 and Slc25a23 may be involved in the regulation of calcium metabolism pathways and play key roles in hypertension. These differentially expressed calcium metabolism-related genes may serve as prognostic markers of hypertension.展开更多
Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calciu...Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells.The calcium signal is in connection with a series of processes critical in the tumorigenesis.Here,we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells.Mechanistically,calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase(FAK),protein kinase B,and p38 mitogen-activated protein kinase.The inhibitor of FAK or Ca2+/calmodulin-dependent kinaseⅡ(CaMKⅡ)reversed the Ca2+-induced effects on HepG2 cells,including cell proliferation and migration,epithelial-mesenchymal transition protein expression levels,and phosphorylation levels of FAK and protein kinase B.Moreover,calcium ions decreased HepG2 cells'sensitivity to cisplatin.Furthermore,we found that the expression levels of FAK and CaMKⅡwere increased in hepatoblastoma.The group with high expression levels of FAK and CaMKⅡexhibited significantly lower ImmunoScore as well as CD8+T and NK cells.The expression of CaMKⅡwas positively correlated with that of PDCD1 and LAG3.Correspondingly,the expression of FAK was negatively correlated with that of TNFSF9,TNFRSF4,and TNFRSF18.Collectively,extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡand enhances cisplatin resistance.FAK and CaMKⅡshape immune cell infiltration and responses in tumor microenvironments,thereby serving as potential targets for hepatoblastoma.展开更多
The hippocampus is involved in important brain functions such as learning and memory,spatial navigation,fear processing,and social behavior(Dudek et al,2016).The most prominent areas of the hippocampus are typically d...The hippocampus is involved in important brain functions such as learning and memory,spatial navigation,fear processing,and social behavior(Dudek et al,2016).The most prominent areas of the hippocampus are typically denoted as the dentate gyrus and the three areas of the cornu ammonis(CA1,CA2,and CA3).Discovered by Lorente de Nó(1934),the CA2 region of the hippocampus is a relatively small area interposed between CA3 and CA1 that forms the nexus linking the input of the entorhinal cortex to the output of CA1(Chevaleyre and Siegelbaum,2010).展开更多
基金the National Natural Science Foundation of China(21978128,91934302)the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)is acknowledged.
文摘Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.
基金supported by the Beijing Featured Livestock and Poultry Genetic Resources Preservation Project,China(202203310002)China Agriculture Research System of MOF and MARA(CARS40)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS04)the Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(236Z6602G)。
文摘Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.
基金supported by the National Natural Science Foundation of China,Nos.62027812(to HS),81771470(to HS),and 82101608(to YL)Tianjin Postgraduate Research and Innovation Project,No.2020YJSS122(to XD)。
文摘Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
文摘Background: Hypertension is a universal risk factor for cardiovascular diseases and is thus the leading cause of death worldwide. The identification of novel prognostic and pathogenesis biomarkers plays a key role in disease management. Methods: The GSE145854 and GSE164494 datasets were downloaded from the Gene Expression Omnibus (GEO) database and used for screening and validating hypertension signature genes, respectively. Gene Ontology (GO) enrichment analysis was performed on the differentially expressed genes (DEGs) related to calcium ion metabolism in patients with hypertension. The core genes related to immune infiltration were analyzed and screened, and the activity of the signature genes and related pathways was quantified using gene set enrichment analysis (GSEA). The infiltration of immune cells in the blood samples was analyzed, and the DEGs that were abnormally expressed in the clinical blood samples of patients with hypertension were verified via RT-qPCR. Results: A total of 176 DEGs were screened. GO showed that DEGs was involved in the regulation of calcium ion metabolism in biological processes (BP), actin mediated cell contraction, negative regulation of cell movement, and calcium ion transmembrane transport, and in the regulation of protease activity in molecular functions (MF). KEGG analysis revealed that the DEGs were involved mainly in the cGMP-PKG signaling pathway, ubiquitin-protein transferase, tight junction-associated proteins, and the regulation of myocardial cells. MF analysis revealed the immune infiltration function of the cells. RT-qPCR revealed that the expression of Cacna1d, Serpine1, Slc8a3, and Trpc4 was up regulated in hypertension, the expression of Myoz2 and Slc25a23 was down regulated. Conclusion: Cacna1d, Serpine1, Slc8a3, Trpc4, Myoz2 and Slc25a23 may be involved in the regulation of calcium metabolism pathways and play key roles in hypertension. These differentially expressed calcium metabolism-related genes may serve as prognostic markers of hypertension.
基金funded by the Jiangsu Medical Scientific Research Project of Jiangsu Health Commission(to Q.Y.)the 789 Outstanding Talent Program of SAHNMU(Grant No.789ZYRC 202070102 to Q.Y.)+1 种基金the Guangzhou Key Medical Discipline Construction Project(to Q.Y.)the National Natural Science Foundation of China(Grant Nos.81870409 and 81671543 to Q.Y.).
文摘Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells.The calcium signal is in connection with a series of processes critical in the tumorigenesis.Here,we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells.Mechanistically,calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase(FAK),protein kinase B,and p38 mitogen-activated protein kinase.The inhibitor of FAK or Ca2+/calmodulin-dependent kinaseⅡ(CaMKⅡ)reversed the Ca2+-induced effects on HepG2 cells,including cell proliferation and migration,epithelial-mesenchymal transition protein expression levels,and phosphorylation levels of FAK and protein kinase B.Moreover,calcium ions decreased HepG2 cells'sensitivity to cisplatin.Furthermore,we found that the expression levels of FAK and CaMKⅡwere increased in hepatoblastoma.The group with high expression levels of FAK and CaMKⅡexhibited significantly lower ImmunoScore as well as CD8+T and NK cells.The expression of CaMKⅡwas positively correlated with that of PDCD1 and LAG3.Correspondingly,the expression of FAK was negatively correlated with that of TNFSF9,TNFRSF4,and TNFRSF18.Collectively,extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡand enhances cisplatin resistance.FAK and CaMKⅡshape immune cell infiltration and responses in tumor microenvironments,thereby serving as potential targets for hepatoblastoma.
基金support from the Agencia Estatal de Investigación and FEDER(BFU2015-68655-P)。
文摘The hippocampus is involved in important brain functions such as learning and memory,spatial navigation,fear processing,and social behavior(Dudek et al,2016).The most prominent areas of the hippocampus are typically denoted as the dentate gyrus and the three areas of the cornu ammonis(CA1,CA2,and CA3).Discovered by Lorente de Nó(1934),the CA2 region of the hippocampus is a relatively small area interposed between CA3 and CA1 that forms the nexus linking the input of the entorhinal cortex to the output of CA1(Chevaleyre and Siegelbaum,2010).