Alkali activated binder, commonly known as geopolymer cement, has replaced Portland cement in the production of mortar and concrete globally over the past few years. The density, particle size distribution, and specif...Alkali activated binder, commonly known as geopolymer cement, has replaced Portland cement in the production of mortar and concrete globally over the past few years. The density, particle size distribution, and specific surface area (SSA) are important physical parameters affecting strength and durability of alkali activated binders. This study carried out tests for physical and chemical properties of the natural pozzolan and calcium hydroxide and then determines the influence of alkali solution (sodium silicate and sodium hydroxide) on strength development of natural pozzolan calcium hydroxide binders. The particle size distribution (PSD), relative densities (RD), and specific surface areas (SSA) of powder natural pozzolan and calcium hydroxide materials and for the mixture of natural pozzolan and calcium hydroxide were determined by using Blaine air permeability apparatus. The optimum proportion of 75% natural pozzolan and 25% calcium hydroxide was obtained which produces the compressive strength of 7.5 MPa at 28 days cured paste. The mixture of natural pozzolan and calcium hydroxide were further grinded at three different finenesses and the particle size gradation, specific densities, specific surface areas and mean particles sizes for the mixture were determined. The compressive strength of alkali activated binders increased with increasing curing period and fineness. The maximum compressive strength for 28 days cured specimens was 26.1 MPa which was obtained at a solution of 8 moles sodium hydroxide concentration. The test results showed that natural pozzolan materials can be used to make geopolymer binders for mortars and concretes. The geopolymer binders for mortars and concretes reduce green gas emission from cement factory but also it can be used to produce durable mortar and concrete with comparable strengths with mortars and concrete made from conventional Portland cement.展开更多
Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study ...Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study had a total Na2Oeq of 4.32. Mortar-bar expansion decreased as pozzolan content in the cement increased. The highest expansion was recorded for reference bars with no pozzolan, reaching a maximum of 0.35% at 42 days whilst the expansion was reduced by between 42.5% and 107.8% at 14 days and between 9.4% and 16.4% at 84 days with increasing calcined clay pozzolan content. Mortar bars with 25% pozzolan were the least expansive recording expansion less than 0.1% at all test ages. X-ray diffractometry of the hydrated blended cement paste powders showed the formation of stable calcium silicates in increasing quantities whilst the presence of expansive alkali-silica gel, responsible for ASR expansion, decreased as pozzolan content increased. The study confirms that calcined clay pozzolan has an influence on ASR in mortar bars and causes a significant reduction in expansion at a replacement level of 25%.展开更多
文摘Alkali activated binder, commonly known as geopolymer cement, has replaced Portland cement in the production of mortar and concrete globally over the past few years. The density, particle size distribution, and specific surface area (SSA) are important physical parameters affecting strength and durability of alkali activated binders. This study carried out tests for physical and chemical properties of the natural pozzolan and calcium hydroxide and then determines the influence of alkali solution (sodium silicate and sodium hydroxide) on strength development of natural pozzolan calcium hydroxide binders. The particle size distribution (PSD), relative densities (RD), and specific surface areas (SSA) of powder natural pozzolan and calcium hydroxide materials and for the mixture of natural pozzolan and calcium hydroxide were determined by using Blaine air permeability apparatus. The optimum proportion of 75% natural pozzolan and 25% calcium hydroxide was obtained which produces the compressive strength of 7.5 MPa at 28 days cured paste. The mixture of natural pozzolan and calcium hydroxide were further grinded at three different finenesses and the particle size gradation, specific densities, specific surface areas and mean particles sizes for the mixture were determined. The compressive strength of alkali activated binders increased with increasing curing period and fineness. The maximum compressive strength for 28 days cured specimens was 26.1 MPa which was obtained at a solution of 8 moles sodium hydroxide concentration. The test results showed that natural pozzolan materials can be used to make geopolymer binders for mortars and concretes. The geopolymer binders for mortars and concretes reduce green gas emission from cement factory but also it can be used to produce durable mortar and concrete with comparable strengths with mortars and concrete made from conventional Portland cement.
文摘Calcined clay pozzolan has been used to replace varying portions of high alkali Portland limestone cement in order to study its effect on the alkali-silica reaction (ASR). Portland limestone cement used for the study had a total Na2Oeq of 4.32. Mortar-bar expansion decreased as pozzolan content in the cement increased. The highest expansion was recorded for reference bars with no pozzolan, reaching a maximum of 0.35% at 42 days whilst the expansion was reduced by between 42.5% and 107.8% at 14 days and between 9.4% and 16.4% at 84 days with increasing calcined clay pozzolan content. Mortar bars with 25% pozzolan were the least expansive recording expansion less than 0.1% at all test ages. X-ray diffractometry of the hydrated blended cement paste powders showed the formation of stable calcium silicates in increasing quantities whilst the presence of expansive alkali-silica gel, responsible for ASR expansion, decreased as pozzolan content increased. The study confirms that calcined clay pozzolan has an influence on ASR in mortar bars and causes a significant reduction in expansion at a replacement level of 25%.