期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DETECTION OF Ca^(2+)-DEPENDENT NEURONAL ACTIVITY SIMULTANEOUSLY WITH DYNAMIC CHANGES IN CEREBRAL BLOOD VOLUME AND TISSUE OXYGENATION FROM THE LIVE RAT BRAIN
1
作者 CONGWU DU ZHONGCHI LUO +4 位作者 MEI YU HELENE BENVENISTE MELISSA TULLY RUBING PAN BRITTON CHANCE 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第2期189-200,共12页
We present a catheter-based optical diffusion and fluorescence(ODF)probe to study the functional changes of the brain in vivo.This ODF probe enables the simultaneous detection ofthe multi-wavelength absorbance and fl... We present a catheter-based optical diffusion and fluorescence(ODF)probe to study the functional changes of the brain in vivo.This ODF probe enables the simultaneous detection ofthe multi-wavelength absorbance and fluorescence emission from the living rat brain.Our previous studies,including a transient stroke experiment of the rat brain as well as the brainresponse to cocaine,have established the feasibility of simultaneously determining changes incerebral blood volume(CBV),tissue oxygenation(StO2)and intracellular calcium([Ca^(2+)]i,using the fluorescence indicator Rhod2).Here,we present our preliminary results of somatosensory response to electrical forepaw stimulation obtained from the rat cortical brain by using theODF probe,which indicate that the probe could track brain activation by directly detecting[Ca^(2+)]i along with separately distinguishing CBV and StO2 in real time.The changes of CBV,StO2 and[Ca^(2+)]i are comparable with the blood-oxygen-level-dependent(BOLD)response tothe stimulation obtained using functional magnetic resonance imaging(fMRI).However,thehigh temporal resolution of the optical methodology is advanced,thus providing a new modalityfor brain functional studies to understand the hemodynamic changes that underlie the neuronalactivity. 展开更多
关键词 Optical spectroscopy calcium fluorescence Rhod2 labeling brain ischemia and cocaine addiction forepaw stimulation.
下载PDF
Dantrolene enhances the protective effect of hypothermia on cerebral cortex neurons
2
作者 Sui-yi Xu Feng-yun Hu +4 位作者 Li-jie Ren Lei Chen Zhu-qing Zhou Xie-jun Zhang Wei-ping Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1279-1285,共7页
Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is ne... Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia(at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke. 展开更多
关键词 nerve regeneration ischemic stroke oxygen-glucose deprivation fluorescent probe neurons flow cytometry apoptosis calcium overload reactive oxygen neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部