Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting...Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.展开更多
OBJECTIVE:To observe the regulation of electroacupuncture on gene expression at calcium signaling pathways in mice with cerebral ischemia reperfusion.METHODS:Sixty male, inbred Kunming mice were randomly assigned to t...OBJECTIVE:To observe the regulation of electroacupuncture on gene expression at calcium signaling pathways in mice with cerebral ischemia reperfusion.METHODS:Sixty male, inbred Kunming mice were randomly assigned to three groups:repeated cerebral ischemia reperfusion group(RG, n = 24),sham-operated group(SG, n = 12), and electroacupuncture group(EG, n = 24).Mice in RG and EGgroups were modeled by repeated cerebral ischemia reperfusion surgery, and EG mice were treated with electroacupuncture for 30 min after recovery from anesthesia.Changes in gene expression profile of mice hippocampi were analyzed by global expression profile microarray.Genes that were up-regulated or down-regulated greater than 1.5folds were considered to be biologically meaningful.Real-time quantitative polymerase chain reaction(q-PCR) method was used to verify the expression of selected genes based on the algorithm [2^(ΔΔCt)].RESULTS:Compared with SG mice, 242 genes showed different in expressions in RG mice:107down-regulated and 135 up-regulated.Compared with RG mice, 609 genes showed a difference of expression in EG mice:315 down-regulated and 375up-regulated.Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated two pathways:calcium signaling and long-term potentiation in which 11 differentially expressed genes selected.Six of the 11 genes in the calcium signaling pathway were verified after real-time q-PCR testing.CONCLUSION:Electroacupuncture treatment of cerebral ischemia reperfusion appears to regulate Atp2a2, Cacna1 e, Camk2 a, Gnas, Grm1, Rapgef3 genes in the calcium signaling pathway.展开更多
Bone defects are common clinical problems in the world,and there are many biomaterials used for treat-ing them.However,there is still a paucity of bioactive materials capable of modulating the immune mi-croenvironment...Bone defects are common clinical problems in the world,and there are many biomaterials used for treat-ing them.However,there is still a paucity of bioactive materials capable of modulating the immune mi-croenvironment.Therefore,it is necessary to identify new therapeutic strategies to regulate the immune microenvironment of the bone defect to further promote osteogenesis.Hydroxyapatite(HAP)is an impor-tant mineral for the framework of the human body.Recently,HAP has become a key research object for bone tissue engineering applications due to its unique tailored properties and similarity to bone tissue.Here,we prepared rod-shaped HAP(rHAP)with different concentrations(0,100,200,and 300μg/mL).The slowly released Ca^(2+)of 200μg/mL rHAP can induce macrophage phenotype 2(M2)polarization to decrease inflammatory cytokine secretion via the PI3K-Akt and Wnt/β-catenin pathways.In addition,rHAP can induce osteogenesis through the osteogenic differentiation of rat bone marrow mesenchymal stem cells.In conclusion,the 200μg/mL rHAP shows the potential for osteoimmunomodulation in a bone defect in vitro and in vivo,which is beneficial to the treatment of bone defects.展开更多
Guanxinshutong capsule(GXSTC) is an effective and safe traditional Chinese medicine used in the treatment of cardiovascular diseases(CVDs) for many years. However, the targets of this herbal formula and the underlying...Guanxinshutong capsule(GXSTC) is an effective and safe traditional Chinese medicine used in the treatment of cardiovascular diseases(CVDs) for many years. However, the targets of this herbal formula and the underlying molecular mechanisms of action involved in the treatment of CVDs are still unclear. In the present study, we used a systems pharmacology approach to identify the active ingredients of GXSTC and their corresponding targets in the calcium signaling pathway with respect to the treatment of CVDs. This method integrated chromatographic techniques, prediction of absorption, distribution, metabolism, and excretion, analysis using Kyoto Encyclopedia of Genes and Genomes, network construction, and pharmacological experiments. 12 active compounds and 33 targets were found to have a role in the treatment of CVDs, and four main active ingredients, including protocatechuic acid, cryptotanshinone, eugenol, and borneol were selected to verify the effect of(GXSTC) on calcium signaling system in cardiomyocyte injury induced by hypoxia and reoxygenation. The results from the present study revealed the active components and targets of GXSTC in the treatment of CVDs, providing a new perspective to enhance the understanding of the role of the calcium signaling pathway in the therapeutic effect of GXSTC.展开更多
基金supported by the National Science Foundation of China (32171941,31571583)。
文摘Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.
基金Supported by the 2013 National Natural Science Foundation of China:The Effect of Electro-acupuncture for Mediating Jnk Mitochondrial Pathway in Bax-gene Knockout Mice With the Cerebral Ischemia Reperfusion(No.81373731)
文摘OBJECTIVE:To observe the regulation of electroacupuncture on gene expression at calcium signaling pathways in mice with cerebral ischemia reperfusion.METHODS:Sixty male, inbred Kunming mice were randomly assigned to three groups:repeated cerebral ischemia reperfusion group(RG, n = 24),sham-operated group(SG, n = 12), and electroacupuncture group(EG, n = 24).Mice in RG and EGgroups were modeled by repeated cerebral ischemia reperfusion surgery, and EG mice were treated with electroacupuncture for 30 min after recovery from anesthesia.Changes in gene expression profile of mice hippocampi were analyzed by global expression profile microarray.Genes that were up-regulated or down-regulated greater than 1.5folds were considered to be biologically meaningful.Real-time quantitative polymerase chain reaction(q-PCR) method was used to verify the expression of selected genes based on the algorithm [2^(ΔΔCt)].RESULTS:Compared with SG mice, 242 genes showed different in expressions in RG mice:107down-regulated and 135 up-regulated.Compared with RG mice, 609 genes showed a difference of expression in EG mice:315 down-regulated and 375up-regulated.Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated two pathways:calcium signaling and long-term potentiation in which 11 differentially expressed genes selected.Six of the 11 genes in the calcium signaling pathway were verified after real-time q-PCR testing.CONCLUSION:Electroacupuncture treatment of cerebral ischemia reperfusion appears to regulate Atp2a2, Cacna1 e, Camk2 a, Gnas, Grm1, Rapgef3 genes in the calcium signaling pathway.
基金This work was funded by the National Key Research and Development Program(Grant No.2020YFC2009004)the National Natural Science Foundation of China(Grant no.52172282)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021M690106)the New clinical practical technology in the Medical Affairs Department of the Qilu Hospital of Shandong University(Grant No.2019-08).We thank the Translational Medicine Core Facility of Shandong University for their consultation and instruments that supported this work.
文摘Bone defects are common clinical problems in the world,and there are many biomaterials used for treat-ing them.However,there is still a paucity of bioactive materials capable of modulating the immune mi-croenvironment.Therefore,it is necessary to identify new therapeutic strategies to regulate the immune microenvironment of the bone defect to further promote osteogenesis.Hydroxyapatite(HAP)is an impor-tant mineral for the framework of the human body.Recently,HAP has become a key research object for bone tissue engineering applications due to its unique tailored properties and similarity to bone tissue.Here,we prepared rod-shaped HAP(rHAP)with different concentrations(0,100,200,and 300μg/mL).The slowly released Ca^(2+)of 200μg/mL rHAP can induce macrophage phenotype 2(M2)polarization to decrease inflammatory cytokine secretion via the PI3K-Akt and Wnt/β-catenin pathways.In addition,rHAP can induce osteogenesis through the osteogenic differentiation of rat bone marrow mesenchymal stem cells.In conclusion,the 200μg/mL rHAP shows the potential for osteoimmunomodulation in a bone defect in vitro and in vivo,which is beneficial to the treatment of bone defects.
基金supported by Ministry of National Science and Technology(No.2011ZX09401-308-6)National Natural Science Foundation of China(Nos.81773772 and 81704088)Shaanxi Department of Science and Technology(No.2016KTTSSF01-04-01)
文摘Guanxinshutong capsule(GXSTC) is an effective and safe traditional Chinese medicine used in the treatment of cardiovascular diseases(CVDs) for many years. However, the targets of this herbal formula and the underlying molecular mechanisms of action involved in the treatment of CVDs are still unclear. In the present study, we used a systems pharmacology approach to identify the active ingredients of GXSTC and their corresponding targets in the calcium signaling pathway with respect to the treatment of CVDs. This method integrated chromatographic techniques, prediction of absorption, distribution, metabolism, and excretion, analysis using Kyoto Encyclopedia of Genes and Genomes, network construction, and pharmacological experiments. 12 active compounds and 33 targets were found to have a role in the treatment of CVDs, and four main active ingredients, including protocatechuic acid, cryptotanshinone, eugenol, and borneol were selected to verify the effect of(GXSTC) on calcium signaling system in cardiomyocyte injury induced by hypoxia and reoxygenation. The results from the present study revealed the active components and targets of GXSTC in the treatment of CVDs, providing a new perspective to enhance the understanding of the role of the calcium signaling pathway in the therapeutic effect of GXSTC.