Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,thei...Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,their further application is largely hindered by the shortage of flexible and stable power sources with multifunctional designability.Herein,a free-standing ZnHCF@CF electrode(ZnHCF grown on carbon nanotube fiber)with good mechanical deformability and high electrochemical performance for aqueous fiber-shaped calcium ion battery(FCIB)is reported.Benefiting from the unique Ca^(2+)/H^(+)co-insertion mechanism,the ZnHCF@CF cathode can exhibit great ion storage capability within a broadened voltage window.By pairing with a polyaniline(PANI)@CF anode,a ZnHCF@CF//PANI@CF FCIB is successfully fabricated,which exhibits a desirable volumetric energy density of 43.2mWh cm^(-3)and maintains superior electrochemical properties under different deformations.Moreover,the high-energy FCIB can be harmoniously integrated with a fiber-shaped strain sensor(FSS)to achieve real-time physiological monitoring on knees during long-running,exhibiting great promise for the practical application of electronic textiles.展开更多
Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology ...Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca^(2+)(1.00Å).Herein,an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries.The doping of Mo could destroy the lattice stability of VS4 material,enhancing the flexibility of the structure.The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite(defined as MoVSO),which serves as an active material for the storage of Ca^(2+)during cycling.Consequently,this amorphous vanadium structure exhibits excellent rate capability,achieving discharge capacities of 306.7 and 149.2 mAh g^(-1)at 5 and 50 A g^(-1)and an ultra-long cycle life of 2000 cycles with 91.2%capacity retention.These values represent the highest level to date reported for calcium ion batteries.The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO.This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.展开更多
目的通过比较噪声暴露后基底膜不同区域内毛细胞(IHCs)带状突触损伤差异,探讨带状突触损伤易感性的相关因素。方法将28只C57BL/6J雄性小鼠随机分为噪声暴露组和对照组,每组14只。噪声暴露组小鼠给予强度103 dB SPL、频率2~20 kHz、持续...目的通过比较噪声暴露后基底膜不同区域内毛细胞(IHCs)带状突触损伤差异,探讨带状突触损伤易感性的相关因素。方法将28只C57BL/6J雄性小鼠随机分为噪声暴露组和对照组,每组14只。噪声暴露组小鼠给予强度103 dB SPL、频率2~20 kHz、持续2 h的宽带噪声暴露,对照组小鼠则饲养于安静环境中。噪声暴露前及噪声暴露后第一天进行ABR测试及毛细胞带状突触免疫荧光染色实验。使用全细胞膜片钳技术比较不同区域IHCs的钙离子流入。通过免疫荧光染色比较噪声暴露后的耳蜗基底膜顶回、中回、底回IHCs钙蛋白酶(Calpain)表达水平,并用蛋白质印迹实验验证钙蛋白酶对IHCs带状突触蛋白CtBP2的损伤作用。结果噪声暴露后一天,噪声暴露组在11.3、16.0、22.6、32.0 kHz的ABR阈值较对照组显著上升(均为P<0.001),中回、底回IHCs带状突触数量明显减少(P<0.05)。全细胞膜片钳实验结果表明耳蜗基底膜中回IHCs有较多的钙离子通道(P<0.01),但其单通道电流较小(P<0.01),顶回、中回IHCs钙离子通道开放率无显著差异(P>0.05)。噪声暴露后,耳蜗基底膜中回、底回IHCs的Calpain表达水平显著高于顶回(P<0.001),蛋白质印迹实验结果表明Calpain以钙离子依赖的方式降解带状突触蛋白CtBP2。结论钙蛋白酶是基底膜高频区内毛细胞带状突触噪声损伤易感的重要因素。展开更多
基金partially supported by the Natural Science Foundation of Liaoning Province(2023-MS-115)the Large Instrument and Equipment Open Foundation of Dalian University of Technology+1 种基金the National Natural Science Foundation of China(22308261)funding from the Fundamental Research Funds for the Central Universities,conducted at Tongji University。
文摘Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,their further application is largely hindered by the shortage of flexible and stable power sources with multifunctional designability.Herein,a free-standing ZnHCF@CF electrode(ZnHCF grown on carbon nanotube fiber)with good mechanical deformability and high electrochemical performance for aqueous fiber-shaped calcium ion battery(FCIB)is reported.Benefiting from the unique Ca^(2+)/H^(+)co-insertion mechanism,the ZnHCF@CF cathode can exhibit great ion storage capability within a broadened voltage window.By pairing with a polyaniline(PANI)@CF anode,a ZnHCF@CF//PANI@CF FCIB is successfully fabricated,which exhibits a desirable volumetric energy density of 43.2mWh cm^(-3)and maintains superior electrochemical properties under different deformations.Moreover,the high-energy FCIB can be harmoniously integrated with a fiber-shaped strain sensor(FSS)to achieve real-time physiological monitoring on knees during long-running,exhibiting great promise for the practical application of electronic textiles.
基金supported by the Open Research Found of Songshan Lake Materials Laboratory(2021SLABFN04)Guangdong Basic and Applied Basic Research Foundation(2022A1515010920)+2 种基金Inner Mongolia Major Science and Technology Project(2020ZD0024)the Alashan League’s Project of Applied Technology Research and Development Fund(AMYY2020-01)the Local Science and Technology Development Project of the Central Government(2022ZY0011)
文摘Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca^(2+)/Ca.However,current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca^(2+)(1.00Å).Herein,an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries.The doping of Mo could destroy the lattice stability of VS4 material,enhancing the flexibility of the structure.The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite(defined as MoVSO),which serves as an active material for the storage of Ca^(2+)during cycling.Consequently,this amorphous vanadium structure exhibits excellent rate capability,achieving discharge capacities of 306.7 and 149.2 mAh g^(-1)at 5 and 50 A g^(-1)and an ultra-long cycle life of 2000 cycles with 91.2%capacity retention.These values represent the highest level to date reported for calcium ion batteries.The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO.This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.