本研究探讨应用荧光染色试剂Calcofluor White M2R染色鉴别家蚕微孢子虫Nosema bombycis。结果表明:在荧光显微镜下可见家蚕微孢子虫孢子被染上强烈的青蓝色荧光,而寄主组织碎片、病毒、细菌等不被染色。该法是一种快速有效鉴别微孢子...本研究探讨应用荧光染色试剂Calcofluor White M2R染色鉴别家蚕微孢子虫Nosema bombycis。结果表明:在荧光显微镜下可见家蚕微孢子虫孢子被染上强烈的青蓝色荧光,而寄主组织碎片、病毒、细菌等不被染色。该法是一种快速有效鉴别微孢子虫的方法。展开更多
Fungal infection remains a major problem worldwide, yet treatment options are limited owing to the lack of effective drugs, the significant toxicity of available compounds, and the emergence of drug resistance. The lo...Fungal infection remains a major problem worldwide, yet treatment options are limited owing to the lack of effective drugs, the significant toxicity of available compounds, and the emergence of drug resistance. The low toxicity of calcofluor white(CFW) is an attractive antifungal compound for its known inhibitive effects on trichophyton rubrum and candida albicans growth. However, the efficacy of CFW is limited in most cases. In order to search for effective means to improve its efficacy, using saccharomyces cerevisiae as a model, we have used microarrays to examine the cell's response when treated with CFW on the genome scale. We found that both the PKC-SLT2(i.e, protein kinase C-mitogen activated protein kinase) and the glycogen metabolic pathways are activated upon CFW treatment. These results suggest that the key components in these pathways could be targeted by other drugs to counter the cell's compensative response, thus to further substantiate the inhibitive effect of CFW on fungal growth, which may lead to treatment regimens with improved efficacy of this compound in clinical applications.展开更多
[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also prov...[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also provided reference for the bio-control effect of Nosema bombycis. [ Method ] Nosema bombycis was used to feed wild type and mutant drosophila, and the morphological observation of Nosema bombycis in drosophila body fluid was also analyzed by calcofluor white M2R fluorescent staining. [ Result] Nosema bombycis could infect drosophila, and the number of Nosema bombycis in the infected mutant drosophila was higher than that in wild type drosophila. [ Conclusion ] Nosema bombycis can infect drosophila, which provides primary reference for studies on the infectivity of Nosema bombycis to other hosts and also lays a foundation for further study on the infection mechanism of Nosema bombycis.展开更多
采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干...采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干扰观察目标物。该方法可以准确观察病原真菌孢子在昆虫体表组织的萌发及附着孢形成。展开更多
[目的]研究家蚕微孢子虫对果蝇的侵染性,为系统研究家蚕微孢子虫侵染机制提供新视野,也为探索微孢子虫的生物防治效果提供参考。[方法]用家蚕微孢子添食野生型和突变型果蝇,并用Calcofluor White M2R荧光染色法进行果蝇体液内的家蚕微...[目的]研究家蚕微孢子虫对果蝇的侵染性,为系统研究家蚕微孢子虫侵染机制提供新视野,也为探索微孢子虫的生物防治效果提供参考。[方法]用家蚕微孢子添食野生型和突变型果蝇,并用Calcofluor White M2R荧光染色法进行果蝇体液内的家蚕微孢子虫形态观察。[结果]结果表明,家蚕微孢子虫在转宿主情况下能够侵染果蝇,且被感染的突变型果蝇体内家蚕微孢子虫的数量多于野生型果蝇。[结论]家蚕微孢子虫能侵染果蝇,该研究结果为研究家蚕微孢子虫侵染其他宿主提供了初步参考,为进一步了解和认识家蚕微孢子虫侵染机制奠定了基础。展开更多
为提高木霉几丁质酶检测方法的准确性和灵敏度,建立一种快速检测几丁质酶同工酶的方法。采用活性凝胶电泳、变性凝胶电泳、原位显色凝胶电泳结合荧光增白剂(Calcofluor white M2R)显色从绿色木霉LTR-2发酵产物中检测几丁质酶同工酶。活...为提高木霉几丁质酶检测方法的准确性和灵敏度,建立一种快速检测几丁质酶同工酶的方法。采用活性凝胶电泳、变性凝胶电泳、原位显色凝胶电泳结合荧光增白剂(Calcofluor white M2R)显色从绿色木霉LTR-2发酵产物中检测几丁质酶同工酶。活性凝胶电泳在粗酶液浓缩5倍时显示两条活性谱带,变性凝胶电泳在浓缩10倍时显示一条活性谱带,原位显色凝胶电泳在浓缩20倍时显示两条不清晰的活性谱带,SDS-PAGE显示这两条活性谱带的分子量分别为65kDa和42kDa。结果表明活性聚丙烯酰胺凝胶电泳和Calcofluor white M2R显色相结合的方法在几丁质酶上样量为0.47U时具有较好的分辨能力,是检测木霉几丁质酶同工酶的有效的方法。展开更多
基金the National Natural Science Foundation of China(No.91229108)the K.C.Wong Education Foundation(Hong Kong,China)
文摘Fungal infection remains a major problem worldwide, yet treatment options are limited owing to the lack of effective drugs, the significant toxicity of available compounds, and the emergence of drug resistance. The low toxicity of calcofluor white(CFW) is an attractive antifungal compound for its known inhibitive effects on trichophyton rubrum and candida albicans growth. However, the efficacy of CFW is limited in most cases. In order to search for effective means to improve its efficacy, using saccharomyces cerevisiae as a model, we have used microarrays to examine the cell's response when treated with CFW on the genome scale. We found that both the PKC-SLT2(i.e, protein kinase C-mitogen activated protein kinase) and the glycogen metabolic pathways are activated upon CFW treatment. These results suggest that the key components in these pathways could be targeted by other drugs to counter the cell's compensative response, thus to further substantiate the inhibitive effect of CFW on fungal growth, which may lead to treatment regimens with improved efficacy of this compound in clinical applications.
基金Supported by Natural Science Foundation of Chongqing(2008BB1368)~~
文摘[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also provided reference for the bio-control effect of Nosema bombycis. [ Method ] Nosema bombycis was used to feed wild type and mutant drosophila, and the morphological observation of Nosema bombycis in drosophila body fluid was also analyzed by calcofluor white M2R fluorescent staining. [ Result] Nosema bombycis could infect drosophila, and the number of Nosema bombycis in the infected mutant drosophila was higher than that in wild type drosophila. [ Conclusion ] Nosema bombycis can infect drosophila, which provides primary reference for studies on the infectivity of Nosema bombycis to other hosts and also lays a foundation for further study on the infection mechanism of Nosema bombycis.
文摘采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干扰观察目标物。该方法可以准确观察病原真菌孢子在昆虫体表组织的萌发及附着孢形成。
文摘[目的]研究家蚕微孢子虫对果蝇的侵染性,为系统研究家蚕微孢子虫侵染机制提供新视野,也为探索微孢子虫的生物防治效果提供参考。[方法]用家蚕微孢子添食野生型和突变型果蝇,并用Calcofluor White M2R荧光染色法进行果蝇体液内的家蚕微孢子虫形态观察。[结果]结果表明,家蚕微孢子虫在转宿主情况下能够侵染果蝇,且被感染的突变型果蝇体内家蚕微孢子虫的数量多于野生型果蝇。[结论]家蚕微孢子虫能侵染果蝇,该研究结果为研究家蚕微孢子虫侵染其他宿主提供了初步参考,为进一步了解和认识家蚕微孢子虫侵染机制奠定了基础。
文摘为提高木霉几丁质酶检测方法的准确性和灵敏度,建立一种快速检测几丁质酶同工酶的方法。采用活性凝胶电泳、变性凝胶电泳、原位显色凝胶电泳结合荧光增白剂(Calcofluor white M2R)显色从绿色木霉LTR-2发酵产物中检测几丁质酶同工酶。活性凝胶电泳在粗酶液浓缩5倍时显示两条活性谱带,变性凝胶电泳在浓缩10倍时显示一条活性谱带,原位显色凝胶电泳在浓缩20倍时显示两条不清晰的活性谱带,SDS-PAGE显示这两条活性谱带的分子量分别为65kDa和42kDa。结果表明活性聚丙烯酰胺凝胶电泳和Calcofluor white M2R显色相结合的方法在几丁质酶上样量为0.47U时具有较好的分辨能力,是检测木霉几丁质酶同工酶的有效的方法。